
HP48

PART 1: Principles and Programming

William C Wickes

HP 48G/ GX Edition

j

HP 48 Insights

I. Principles and Programming of the HP 48

HP 48G/GX Edition

William C. Wickes

Larken Publications
4517 NW Queens Avenue
Corvallis, Oregon 97330

Copyright f!:") William C. Wickes 1991, 1993

All rights reserved. No part of this book may be reproduced, transmitted, or stored in
a retrieval system in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the
author.

First Printing, September 1993

ISBN 0-9625258-5-5

Acknowledgements

I thank my wife, Susan, and my children, Kenneth and Lara, for their help m the
preparation of this manuscript.

Thanks also to the originators: Bill, Bob, Bob, Charlie, Diana, Gabe, Grant, Jim,
Laurence, Max, Nathan, Pat, Paul, Stan, and Ted, for converting brainstorms into bits.

Dedicated to Susan, Ken, and Lara

Author's Note

Readers of this book who have previously read HP-28 Insights or HP 41/HP 48
Transitions may notice that there is some material here that is common to one or both of
those books. This is deliberate; HP 48 Insights was developed as a revision of HP-28
Insights just as the HP 48 is a revision of the HP 28. As the new book progressed, it
became apparent that there was too much material to be contained in a single volume.
Accordingly, the book has been split into three parts. The first of these is HP41/HP48
Transitions, which contains all of the HP41-related material that was present in HP-28
Insights, plus additional content to make that book self-contained. Part I of HP 48
Insights, as its subtitle suggests, focuses on the principles of HP 48 design and various
programming methods and resources. Part IL originally published in 1992, covers more of
the integrated systems: HP Solve, unit management, plotting, statistics, etc.

The advent of the HP 48G /GX in 1993 has inspired this revision of HP 48 Insights I and
IL which were written for the HP 48S/SX. The new editions contain all of the material of
the first editions, modified as needed for the keyboard, menus, and user inteiface of the
new calculators. New material has also been added to address the features of the
HP48G/GX that were not present in the HP48S/SX.

T7wnks to all of the readers of my books, starting with Synthetic Programming on the
HP-41C back in 1980, for their continued support and encouragement. Even in this day of
poweiful desktop computing .Iystems, there remains something special about a cllstomizablc
handheld calculator like the HP 48 that makes it fUll to write abollt as well as to llse.

William C. Wickes
August 9, 1993

CONTENTS

1. Introduction .
1.1 The Evolution of the HP 48

1.1.1 Versions 6
1.1.2 HP48SjSX and HP48GjGX Compatibility 7

1.2 About This Book
1.3 Notation.
1.4 Terminology.
1.5 Easy to Use or Easy to Learn?

2. RPN Principles .
2.1 The Evaluation of Mathematical Expressions
2.2 Calculator RPN
2.3 RPL RPN

3. Objects and Execution
3.1 Operations
3.2 Objects

3.2.1 Operations as Objects 33
3.3 Execution and Evaluation

3.3.1 When are Objects Executed? 35
3.4 Data Objects

3.4.1 Real Numbers 37
3.4.2 Complex Numbers 38
3.4.3 Strings 41

3.4.3.1 Concatenation 42
3.4.3.2 String Comparisons 42
3.4.3.3 Other String Manipulation Commands 42

3.4.4 Arrays 44
3.4.5 Lists 45
3.4.6 Binary Integers 45
3.4.7 Graphics Objects 46
3.4.8 Tagged Objects 47
3.4.9 Unit Objects 49
3.4.10 Directories 50
3.4.11 Libraries 50
3.4.12 Backup Objects 51

3.5 Procedure Objects .
3.5.1 Program Objects 52
3.5.2 Algebraic Objects 52

3.5.2.1 Expression Structure 55

- 1 -

1
2

8
11
15
16

19
20
23
25

29
29
31

34

36

51

3.5.3 Lists as Procedures 56
3.5.4 Commands and Functions 57
3.5.5 Command Execution and Standard Errors 58

3.5.5.1 Automatic List Processing 59
3.5.6 Function Execution 61

3.5.6.1 Automatic Simplification 61
3.5.6.2 Symbolic and Numerical Execution; ~NUM 63

3.5.7 Symbolic Constants 64
3.5.7.1 Other Symbolic Constants 66
3.5.7.2 Evaluation of Symbolic Constants 66

3.6 Name Objects
3.6.1 Global Names 68
3.6.2 Local Names 70
3.6.3 XLIB Names 70

3.7 Quoted Names
3.8 Quotes in General
3.9 EVAL
3.10 System Objects

3.10.1 SYSEVAL 73
3.10.2 LlBEVAL 75

4. Object Creation. . .
4.1 The Basic Interface
4.2 Keyboard Mastery .

4.2.1 Keystroke Strategies 80
4.2.2 Navigating the Menus 81

4.2.2.1 Exiting 82
4.2.3 CANCEL 83

4.3 Command Line Object Entry
4.3.1 Key Definitions and Entry Modes 84
4.3.2 Controlling the Entry Mode 86
4.3.3 ENTER in Detail 87

4.3.3.1 Comments 89
4.4 Object Editing and Viewing .

4.4.1 Viewing Objects 91
4.5 Input Forms .

4.5.1 Check Fields 94
4.5.2 Choose Fields 95
4.5.3 Data Fields 96

4.6 The Matrix Writer . .
4.6.1 Array Entry 101

4.6.1.1 Vector Entry 104

- ii -

67

70
71
72
73

77
77
79

83

90

92

100

4.6.2 Editing Cells 104
4.6.2.1 Changing Array Dimensions 105
4.6.2.2 Stack Access 106

4.7 The EquationWriter
4.7.1 The EquationWriter Display 109

4.7.1.1 Invoking the EquationWriter 110
4.7.2 Basic Expression Entry 111

4.7.2.1 Number Entry 113
4.7.2.2 Names and Prefix Functions 113
4.7.2.3 +, -, X 113
4.7.2.4 Division 114
4.7.2.5 Exponents 116

4.7.3 Special Forms 116
4.7.3.1 Square Root 116
4.7.3.2 xth-Root 117
4.7.3.3 Derivative 117
4.7.3.4 Integral 117
4.7.3.5 Summation 118
4.7.3.6 Where 119
4.7.3.7 Units 119

4.7.4 Correcting Mistakes 119
4.7.5 Stack Access 120
4.7.6 Subexpression Operations 121

5. The HP 48 Stack
5.1 Clearing the Stack . .
5.2 Rearranging the Stack

5.2.1 Exchanging Two Arguments 127
5.2.2 Rolling the Stack 127
5.2.3 Copying Stack Objects 128
5.2.4 How Many Stack Objects? 129

5.3 Recovering Arguments
5.4 Stack Manipulations and Local Variables
5.5 The Interactive Stack .
5.6 Managing the Unlimited Stack .

5.6.1 Stack Housekeeping 134
5.6.2 A Really Empty Stack 137
5.6.3 Disappearing Arguments 137

5.7 Design Insights .

6. Storing Objects . .
6.1 Global Variables

6.1.1 DEFINE 145

- III -

106

125
126
127

130
131
132
134

138

141
142

6.1.2 Directories 146
6.1.2.1 Organizing User Memory 149
6.1.2.2 Directory Objects 151

6.1.3 The Memory Browser 153
6.1.4 Cataloging and Finding Global Variables 156
6.1.5 Deleting Global Variables 157
6.1.6 Cancelling STO and PURGE 158
6.1.7 Moving A Variable 159

6.2 Local Variables .
6.3 Additional Global and Local Variable Operations

6.3.1 Recalling Values 162
6.3.2 Altering the Contents of Variables 164

6.3.2.1 Store Menu Commands 164
6.3.2.2 Counter Variables 166
6.3.2.3 PUT and PUTI 166
6.3.2.4 Additional Array Commands 166

6.4 Ports
6.4.1 Plug-In Ports 168
6.4.2 Port Variables 169

6.4.2.1 Port Menus 171
6.4.2.2 Altering Port Variables 172

6.4.3 Libraries 173
6.4.3.1 Other Library Commands 177

6.5 Name Resolution
6.5.1 Command Line Entry 179
6.5.2 Executing Name Objects 180

6.5.2.1 Resolution Failures un
6.5.3 Path Names 182
6.5.4 Archiving Memory 183

6.6 Calculator Resets

161
162

167

177

186

7. Customization 189
7.1 Modes and Flags. 189

7.1.1· Flag Commands 191
7.1.2 The Modes Input Form 192
7.1.3 System Flag Assignments 193

7.2 Key Assignments 195
7.2.1 Single Key Assignments 196

7.2.1.1 An Interactive Key Assignment Program 197
7.2.2 Multiple Key Assignments 198
7.2.3 Key assignments and memory 199

D ~~M~. ~

- IV -

7.3.1 Built-in Menus 202
7.3.2 Custom Menu Object Types 202
7.3.3 Menu Key Labels and Shifted Menu Key Actions 205

7.4 Vectored ENTER
7.4.1 Examples 208

8. Problem Solving
8.1 HP Solve .
8.2 Symbolic Manipulations
8.3 Programs.
8.4 Summary.
8.5 User-Defined Functions

8.5.1 User-Defined Function Structure 222
8.5.2 User-defined Functions as Mathematical Functions 223
8.5.3 Defining Programs 226
8.5.4 Additional Examples: Geometric Formulae 226

9. Programming
9.1 Program Basics

9.1.1 The « »Delimiters 230
9.1.2 The Program Body 231
9.1.3 Structured Programming 232

9.2 Program Structures
9.3 Tests and Flags .

9.3.1 HP48 Test Commands 239
9.3.2 Equality 239

9.4 Conditional Branches .
9.4.1 Simple Branches: The IF structure. 241
9.4.2 RPN Command Forms 243
9.4.3 The CASE Structure 244

9.5 Loops and Iteration
9.5.1 Definite Loops 246

9.5.1.1 Summations 248
9.5.1.2 Varying the Step Size 249
9.5.1.3 Looping with No Index 250
9.5.1.4 Exiting from a Definite Loop 250
9.5.1.5 Generating Sequences 251

9.5.2 Indefinite Loops 253
9.5.2.1 DO Loops 253
9.5.2.2 WHILE Loops 255
9.5.2.3 DO vs. WHILE 256

9.6 Error Handling
9.6.1 CANCEL 258

- v -

206

211
212
213
217
219
220

229
230

235
237

241

246

256

9.6.2 Custom Errors 259
9.6.3 Error Handling and Argument Recovery 260
9.6.4 Exceptions 261

9.7 Local Variables . 262
9.7.1 Comparison of Local and Global Variables and Names 266

9.8 Local Name Resolution 267
9.8.1 Local Subroutines 270
9.8.2 Resolution Speed 271

10. Display Operations and Graphics
10.1 Controlling the Display

10.1.1 Postponing the Standard Display 275
10.2 Text Displays
10.3 Graphics Displays .

10.3.1 Graphics Object Operations 279
10.3.2 Graphical Text 284
10.3.3 Displays on the Picture Screen 284
10.3.4 ANIMATE 287
10.3.5
10.3.6

Logical Coordinates 289
Pixel Drawing 290
10.3.6.1 Off-Screen Coordinates 294

11. Arrays and Lists
11.1 Arrays

11.1.1 Array Creation 297
11.1.2 Array Rearrangements 299
11.1.3 Single-Element Operations 300
11.1.4 Rowand Column Operations 300
11.1.5 Subarray Operations 301

11.2 Symbolic Access to Array Elements
11.3 Vectors and Coordinate Systems

11.3.1 Coordinate Systems 306

11.4
11.3.2 Example: Coordinate Transformations 311
Lists
11.4.1
11.4.2
11.4.3

Assembling Lists 313
List Element Commands 315
List Mathematics 316

11.4.4 Lists as Argument Sequences 318
11.4.4.1 Applying Commands and Programs to Lists of

Arguments 318
11.4.4.2 Accumulations 320
11.4.4.3 Operations on Sublists 321
11.4.4.4 List Processing Errors 323

- vi -

273
274

276
278

297
297

303
304

312

11.5 Using Lists in Programs 324
11.5.1 Input Lists 324

11.5.1.1 Index List Arguments 325
11.5.2 Output Lists 326
11.5.3 Lists of Intermediate Results 327
11.5.4 Lists As Procedures 329

11.6 Composite Objects and Memory 330
11.7 Symbolic Arrays 332

11.7.1 Utilities 333
11.7.2 Symbolic Array Arithmetic 337
11.7.3 Determinants and Characteristic Equations 339

12. Program Development 343
12.1 Program Editing 343

12.1.1 Low Memory Editing Strategies 344
12.2 Starting and Stopping 345

12.2.1 CANCEL, DOERR and KILL 347
12.2.2 Single-Stepping 348

12.3 Debugging 349
12.4 Program Optimization 355
12.5 Memory Use 35R

12.5.1 Using BYTES 359
12.6 Obtaining Input. 361

12.6.1 Halting for Input 361
12.6.1.1 Verbose Prompts 364
12.6.1.2 Prompting with Menus 365

12.6.2 Protected Entry. 367
12.6.3 Using INPUT. 367
12.6.4 Keystroke Input 371

12.6.4.1 KEY 371
12.6.4.2 WAIT 373
12.6.4.3 The CANCEL Key 373
12.6.4.4 An Input Programming Example 373

12.6.5 Custom Input Forms 376
12.7 Displaying Output 382

12.7.1 Tagged Objects 383
12.7.2 Message Boxes 383

12.8 Programs as Arguments 384
12.9 Timing Execution 388

12.9.1 Erratic Execution 389
12.10 Recursive Programming 390
12.11 Additional Program Examples 392

- vii -

12.11.1 Random Number Generators 392
12.11.1.1 Poisson Distribution 392
12.11.1.2 Normal Distribution 394

12.11.2 Prime Numbers 397
12.11.3 Prime Factors 400
12.11.4 Simultaneous Equations 401
12.11.5 Infinite Sums 404

12.11.5.1 Sine Integral 405
12.11.5.2 Cosine Integral 406
12.11.5.3 Sum Programs 408

Program Index 411

Subject Index . 413

- viii -

1. Introduction

The HP 48 is a unique calculator. No other handheld devicc can match its combination
of mathematical capability, customizability, and extensibility. Its uniqueness, however,
means that it uses methods and resources that are new and special to it, making it in
many respects a challenge to learn to use effectively. If you are a beginning user of the
HP 48, you may well be a little overwhelmed or even intimidated by the sheer extent of
the HP 48's capabilities. You might also imagine that it will take you a long time to
master the calculator. Fortunately, this shouldn't be true. Running throughout the
HP48's feature set and methodology are a few common themes and principles; under­
stand those and you will find it easy to assimilate and use each new calculator operation
that you study.

There are, of course, many different approaches to teaching the use of a device like the
HP 41\; no onc approach is best for cvcryone. Onc mcthod is to tcach everything by
example, and trust that the underlying principles will become apparent. This is the style
of the HP48 owners' manuals, which works quite well for many people. In this hook we
will take a different tack and start with the principles, then use examples to illustrate the
principles. We believe that a clear understanding of those principles helps you to under­
stand the examples and to extrapolate them more easily to prohlems for which you don't
have cxplicit cxamples.

For cxample, here's how you add two numbers on thc HP 41\:

1. Kcy in the first numher.

2. Key in the second number.

3. Press [±] .

If you're familiar with traditional HP scientific calculators, you will recognize this as the
standard "RPN" keystroke sequence for addition. If you have only used so-called "alge­
braic" calculators, the sequence may seem a little awkward--but we'll postpone explana­
tion and justification to Chapter 2. The principle involved is the application of a func­
tion, in this case +, to arguments that appear on a "stack" of such arguments; the
function's result replaces its arguments on that stack. The specific example here shows
how two ordinary real numbers are added; however, once you've learned this sequence,
you immediately know also how to add, for example, two complex numbers or two vec­
tors. Just take the above instructions and substitute "complex number," or "vector,"
everywhere you see "number." You follow the same logical sequence, and press the
same [±] key, for all of the kinds of addition that the HP 48 provides. This consistency
and uniformity runs through all HP 48 operations.

-1-

1.0 Introduction

When we use the term HP 48, we are including the HP 48S and HP 48SX and the newer
HP48G and HP48GX--and any future calculators in this product line that share a com­
mon package and operation with the original HP48SX. Successful Hewlett-Packard cal­
culators in the past have often developed into families of several calculators with the
same number, such as the HP41C, HP41CV, and HP41CX. For the sake of simplicity
and generality, we will generally not use the trailing letters of a calculator's name unless
referring to a specific model.

1.1 The Evolution of the UP 48
In 1972, Hewlett-Packard introduced the HP35, an "electronic slide-rule" that revolu­
tionized the world of numerical calculations. It offered high-precision arithmetic, loga­
rithmic, and trigonometric functions at the press of a key, obsoleting slide-rules and
thick function tables. The HP 35 was followed by numerous similar products, from HP
and from other manufacturers, that expanded on the HP 35 theme by offering more
functions and more data storage registers.

A second generation of calculators was started by the HP 65, the first programmable
calculator. This calculator allowed you to customize it by creating programs, in effect
extending the built-in command set. Like the HP35, the HP65 was followed by
numerous variations on the programming theme, including handheld computers pro­
grammable in BASIC. Perhaps the most successful of these was the HP41 family, start­
ing with the HP41C in 1979, which quickly became the standard among engineering cal­
culators. The HP 41's ten-year lifetime, remarkably long in this era of rapid changes in
computing technology, resulted from its powerful combination of built-in functions, cus­
tomizability, and extensibility--the same virtues we extolled above for the HP 48.

The HP 41 and all of the other first- and second-generation calculators share two com­
mon limitations. First, they are optimized only for dealing with real floating-point
numbers. Some calculators allow you to work with character strings, complex numbers,
and/or matrices, but typically each additional data type has its own special commands or
working environment, requiring you to learn new calculation methods and making it
hard to combine different data types in the same calculation. Second, none of these cal­
culators allow you to deal with programs as unevaluated mathematical quantities. For
example, you can write programs to calculate a +b, and c +d, but there is no way for
you to manipUlate the program results to produce a new result like a + b + c + d except
by running the programs to produce numerical results, then combining the numbers.

A third generation of calculators was born with the advent of the HP 28C in 1987. The
first generation was characterized by the application of built-in functions to real
numbers. The second generation added extension of the built-in function set by user

-2-

Introduction 1.1

programs. The HP 28C made a major leap in calculator technology by making the pro­
grams themselves subject to logical and mathematical operations. In short, the HP 28C
is the first symbolic calculator--on which calculations can be represented as unevaluated
expressions and programs, to which you can apply the same operations that you can
apply only to numbers on other calculators. Moreover, the HP28C allows you to work
with a variety of data types, including the strings and matrices mentioned above, using
exactly the same logic and keystrokes that you use for ordinary numbers. The most
important of these new data types is the algebraic object. You can, for example, enter
algebraic objects that represent a + band c + d symbolically, then press the [TI key to
return the new symbolic result a +b +c +d. The variables do not have to have numeric
values before you can add them. Most HP 28C mathematical functions, in fact, can
accept symbolic inputs and return symbolic results. Not only does this mean that you
can perform symbolic algebra, and even calculus, right on the HP 28C, but at a stroke,
much of the work of programming disappears. These capabilities represent such a
dramatic advance over previous calculator technology that they merit the description
"third generation."

The HP35 introduced a standard "user-interface" called RPN (short for Reverse Polish
Notation), that has been the hallmark of HP calculators ever since. RPN calculators are
organized around a stack of number registers, using a last-in-first-out logic that is
optimal for key-per-function operation. Throughout the evolution of HP calculators
from the HP 35 up through the HP 41, that standard RPN interface remained virtually
unchanged. If you were familiar with one HP calculator, you could pick up any other
and use it right away--that is, until the advent of the HP 28C. The HP 28C succeeded in
preserving the advantages of RPN while making important changes to generalize the
interface to handle the HP 28C's wealth of new data types, most particularly including
variables and expressions for symbolic mathematics.

The HP 28C's advances in calculation ability were so compelling that the calculator was
very popular despite a severe handicap--a small memory that made it impractical to use
the calculator for anything but modest-sized computations and programs. This defi­
ciency was corrected in a new HP28 model, the HP28S, introduced in January, 1988.
The first public appearance of HP28S calculators were special models built to com­
memorate the one hundredth anniversary of the American Mathematical Society,
delivered at the joint annual meeting of the AMS and the Mathematical Association of
America. This was a highly appropriate forum for the introduction, because of the pro­
found impact the HP 28C was having on the mathematics education community. Driven
by students and imaginative educators, with whom the HP28 was an instant success, the
HP 28S became a standard teaching tool at many universities.

Although the HP 28 was quite successful in engineering and scientific disciplines, it is
fair to say that it did not have as dramatic an impact in those fields as in mathematics.

·3·

1.1 Introduction

This is partly due to the earlier success of the HP 41 with technical users, since they
were accustomed to the extensibility provided by the HP 41's plug-in memory ports and
consequently were less ready to switch to a calculator that lacked that feature. The HP
41's utility was greatly enhanced by the availability of a large amount of professional and
amateur software, which could be loaded into the calculator by several automated
methods. A similar software base never developed for the HP 28, since its only program
entry method is the keyboard.

The HP 48SX, introduced in March, 1990, is a direct descendent of both the HP 41 and
the HP 28. Normally, the numbers associated with HP calculators have Iittlc signifi­
cance, but it is hard not to notice that the number 48 itself is a cross between 41 and 28.
From the HP 41, the HP 48SX inherited:

• Plug-in memory ports.

• I/O capability (the HP41 used HP-IL; the HP48SX uses a serial communications
that i~ a standard on personal computers).

• A redefinable keyhoard.

• The "vertical format" keyhoard layout that is convenient for handheld operation.

The HP 2X contrihuted:

• Extensive real and symholic mathematical eapahilities.

• The operating system and user language.

• Plotting and a graphics display.

• The menu key system.

The HP 48SX also henefited from users' reaction to the HP 28, adding the most­
requested features missing from the HP 28:

• A bigger display.

• More graphics and plotting features.

• Bi-directional infrared I/O, especially for importing or saving software.

• Symholic integration, beyond the Taylor's polynomials method used on the HP28.

• More "help" from the calculator in using some of its more complicated features.

Some of these features evolved into major HP 48 systems that considerably exceeded the
scope of a straightforward evolution from the HP41 or the HP28. For example, the
HP48 EquationWriter was an outgrowth of a need to improve the HP28's mechanism

-4-

Introduction 1.1

for setting up numerical integration problems. The EquationWriter obviously satisfies
that need, but has much broader application than just for integration problems. Simi­
larly, both the HP41 (through plug-in programs) and the HP28 contain some physical
unit conversion capability, but the HP 48's unit management system is enormously more
flexible, powerful, and usable than that of its predecessors.

In the matter of programming language, no simple convergence of the HP 41 language
and the HP 28 language was possible. Although using the HP 41 language in the HP 28
would have made the HP 41 software base available for the new calculator, that
language was stretched to its limit already by the HP41 itself, and it is not capable of
supporting the symbolic calculations that are the heart of the HP 28. Consequently, the
HP 48 follows the HP 28 design--the HP 48 operating logic and programming language
are effectively a superset of those of the HP 28. Computer languages are known for
their whimsical names; the HP 28/HP 48 language is no exception, with the name RPL,
which stands for Reverse Po/ish Lisp. This name suggests its derivation from HP calcu­
lators (and from FORTH, another computer language that uses reverse Polish logic),
and from the computer language LISP, which is frequently used in computer symbolic
mathematics systems. Note that the HP 41 language was never given a name, so many
people call HP 41 programming "RPN programming." This is unfortunate since, prop­
erly speaking, RPN is a mathematical logic that is not specific to any calculator or com­
puter.

In 1992, Hewlett-Packard introduced the HP48S, which lacks the plug-in ports of the
HP 48SX but is otherwise the same in function and appearance. The HP 48S was
directed primarily at students, for whom price is often a paramount issue (particularly if
calculators are a school purchase). The appearance of several heavily promoted
graphics-capable calculators from Texas Instruments, Sharp, and Casio at prices sub­
stantially lower than the HP 48SX made the HP 48S an important competitive entry for
Hewlett -Packard. The capabilities of the HP 48 are in a different class from those of its
rivals, but price will always be an important factor.

Imitation being the sincerest form of flattery, Texas Instruments developed the TI-85
calculator, which provides many of the HP48S/SX's numerical capabilities (and even
exceeds some). Many people find the TI-85's fill-in-the-boxes interface to be easier to
learn than the more wide open and flexible HP 48 style. Partly as a counter to this, but
more as a result of its usual pack-even-more-in product development, Hewlett-Packard
introduced the HP 48G and HP 48GX in the summer of 1993. The HP 48G is the
replacement for the HP 48S, with more than just a new color scheme: it has twice as
much ROM (512K) as its predecessor and features a screen field/dialogue box interface
to most of its primary integrated problem solving resources such as plotting and cal­
culus. New functionality includes expanded array manipulations, differential equations,
three-dimensional plotting, and a library of pre-loaded equations from science and

-5-

1.1 Introduction

engineering fields adapted from the HP 82211A Solve Equation Library Application
Card for the HP48S/SX. The HP48GX is the new counterpart of the HP48SX, con­
taining all of the HP48G functionality, but with 128K of RAM built-in as well as two
plug-in card ports for adding additional RAM or ROM. The port memory management
of the HP 48GX is extended so that a card with up to 4 Mbytes of memory can be used
in port 2 (section 6.4). Finally, the overall execution speed of the HP48G/GX is about
40% faster than the HP 48S/SX.

The HP48G/GX also incorporates a redesigned EquationWriter that provides a rapid .!
backspace/correction capability that was an unfortunate weakness of the original
HP48S/SX EquationWriter. The new EquationWriter was actually quietly introduced
in the last revision (version H) of the HP 48S/SX, but most existing HP 48S/SX's have
the old EquationWriter.

1.1.1 Versions
Since the introduction of the first HP 48SX, Hewlett-Packard has revised the internal
programs ("firmware") several times. Most of the revisions were to correct defects in
the programs, but some were for significant enhancements, including the major addi­
tions and improvements developed for the HP48G/GX.

Each different HP 48 firmware version is characterized by a unique version letter, that is
the last character in a six character version string of the form HP-48v, where "v" is a
single upper-case letter that varies from version to version. The first HP 48SX was ver­
sion A; versions A-I differed only in defect fixes. Version f was the first version with
actual functionality improvements: the EquationWriter was improved, primarily to speed
up the backspace operation, some preprocessing was added to speed up plotting and
solving (especially with units), and plot cursor motion was sped up. Version K first
appeared in the HP48G, representing, of course, major changes to version f.

The version string appears in the header used in Kermit transfers of objects between the
HP48 and other devices (this is why the HP48G/GX continues the version numbering
used by the HP48S/SX, rather than starting over with version A--otherwise, the
HP48S/SX and the HP48G/GX would not be able to exchange programs in binary for­
mat). You can also view the version string directly. On the HP48S/SX, press [QID -
[Q] together, then ~ followed by IEVALI (press [QKJ - [Q] together to resume normal
operation). On the HP 48G/GX, the command VERSION returns two strings with the
version and a copyright message:

·6-

Introduction

{ HOME}

4:
3:
2: IIVer-sion HP48-M II
1: IICoP:iiiht HP 1993 11

QIHrnGrnD EmlDIllJItD

1.1

(There is also a SYSEVAL program that works on all HP 48 models--see section 3.10.1).

1.1.2 HP48S/SX and HP48G/GX Compatibility
By and large, the HP48G/GX is a superset of the HP48S/SX, meaning that the G
models reproduce all of the functionality of the S models while adding new features.
The compatibility is most complete for commands--all HP 48S/SX commands are avail­
able on the HP48G/GX. Thus any program written for the HP48S/SX will most likely
run unchanged on the HP48G/GX. Programs developed for the G models can also be
used on the S models as long as they only usc commands common to both. Neverthe­
less, problems may still arise in transferring S programs to the newer calculators:

• When a global name matches that of a HP 48G /GX command. If the program is
transferred on a memory card, or in binary mode via the infrared or wired serial
ports, it should run properly, without modification. However, if it is transferred in
ASCII mode or is edited and reentered on the HP48G/GX, the names will be con­
verted to commands, which will certainly prevent proper program execution.

• When a program executes MENU or TMENU to activate a built-in menu (section
7.3). The menu numbers are changed from the HP48S/SX to the HP48G/GX to
accommodate new and rearranged menus.

• When a program depends on an error condition that is eliminated on the
HP 48G/GX. For example, multiplication of two lists is not possible on the
HP 48S/SX, but yields the products of the corresponding list elements on the
HP 48G /GX. If a program assumes an error will occur in such a case, it will not
work on the HP48G/GX.

• When a program is written in the internal system language (or uses SYSEVAL--see
section 3.10.1) and uses a system resource such as a memory location that is not
identical in the two models. Most programs should not have this problem, but there
is no guarantee in general. Note that Hewlett-Packard's own HP48SX plug-in
module, the HP82210A HP41CV Emulator Application Card, will not work on the
HP 48GX, because of the new port memory management scheme on that calculator.

-7·

1.1 Introduction

[It is possible for a program to determine in which model calculator it is running. See
section 3.10.1]

Although Hewlett-Packard went to considerable effort to preserve program compatibility
between the HP48SjSX and the HP48GjGX, it did not attempt to preserve keystroke
compatibility. The shifted key functions and menu organization on the HP 48G JGX are
changed substantially compared to the HP 48S jSX, not only to support the new func­
tionality but also to take advantage of constructive criticism from HP 48S jSX users and
programmers. Again, virtually all HP48SjSX operations are available on the
HP 48G jGX--but the exact keystrokes may differ. The unshifted keys and all of the
shifted key mathematical functions are the same on both models, so at least simple cal­
culations use the same keystrokes.

1.2 About This Book
The HP 48 naturally comes with an Owner's Manual (HP 48SjSX) or User's Guide
(HP 48C; jGX) that covers most of the calculator's features in varying levels of detail. A
Proffal1lmer'S Reference Manual is also available, which presents detailed information on
individual commands. HP 48 InsiRhts is not intendcd to supplant those books, but to
supplement them. As stated earlier, IllsiRhts will concentrate on the principles and
themcs of HP 48 operation, and providc a dcpth of analysis that is not possihle in a
comprchensive in-box manual.

We also hope to provide a little more motivation, and some more elaborate cxamples.
By motivation, wc mcan thc purpose and usc of many of the operations, and the con­
nections between various features of the calculator. The scope of the HP 48 is so broad
that we cannot show you how to use it for every imaginable prohlem, but we can try to
help you understand it enough to solve your own problems. We delve quite deeply into
thc HP 48's principles of operation, with the expectation that if you know the principles,
you will learn and remember keystrokes and methods much more easily.

We assume that you have read enough of the HP manuals to know how to perform sim­
ple keystroke calculations, enter various object types, and find a command in a menu.
In some cases, where there are crucial ideas that we want to communicate, we will show
some actual keystroke sequences and certainly repeat some material that is in the HP
manuals. But for the most part we will assume that you know the rudiments of HP 48
operation so that we can concentrate on ideas and connections. Multi-step operations
are generally shown as command sequences (such as they might appear in a program)
rather than as keystrokes. This also has the advantage that the sequences are applicable
interchangeably to the HP 48S jSX and the HP 48G jGX; since the keyboard and menus
differ on the Sand G models, the actual keystrokes can differ.

-8-

Introduction 1.2

This HP48G/GX Edition of HP48 Insights is an extension of the original edition to
accommodate the new styles and functionality of the HP48G/GX. Although it is writ­
ten for the HP48G/GX, most of the material applies just as well to the HP48S/SX.
All of the programs from the first edition will run unchanged on the HP 48G /GX, but
some of the programs have been rewritten to take advantage of and illustrate the appli­
cation of HP48G/GX commands.

HP 48 Insights Part I breaks roughly into two main sections. In the first section,
Chapters 1 through 6, we discuss primarily the principles and methods of HP 48 opera­
tion. This begins with a review of the mathematical ideas that underlie the HP 48's use
of Reverse Polish Notation and the nature of HP 48 objects. Thcn, moving from the
abstract to the concrete, we look at the creation of objects, their manipulation on the
stack, and their storage in memory. The second section, Chapters 7 through 12, is an
extended discussion of HP 48 programming, starting with mode and keyboard customiza­
tion. Then we review general problem solving techniques, continue with a study of the
structures and objects central to programming, and conclude with topics in program
development.

The following summarizes the chapter topics:

Chapter

1. Introduction

2 RPN Principles

3. Objects and Execution

4. Object Creation

5. The HP 48 Stack

6. Object Storage

Topics

Introductory material, notation conventions.

The theory of RPN, and its electronic
implementation.

Operations, objects, execution and evalua­
tion, quotes.

HP 48 keyboard design and methodology;
object entry and editing; the MatrixWriter;
the EquationWriter.

Stack operations, recovering arguments, the
interactive stack.

Creating, storing, recalling, evaluating and
purging variables; directories; port vari­
ables; libraries; name resolution; calculator
resets.

-9-

1.2

7.

8.

9.

10.

11.

12.

Customization

Problem Solving

Programming

Display Operations and
Graphics

Arrays and Lists

Program Development

Introduction

Modes and flags; user key assignments;
custom menus; vectored ENTER.

Introduction to HP 48 problem-solving
methods; user-defined functions.

The principles of program objects; tests
and flags; conditional branches; loops;
error handling; local variables.

The text and graphics screens; graphics
objects; displaying text and graphics; pixel
drawing.

Arrays; coordinate systems; lists and their
applications; symbolic arrays.

The art of program construction; editing
and debugging; starting and stopping;
optimization; input and output; programs
as arguments; recursion.

The presentation of the book's subject matter is not always linear. That is, we often
make use of or refer to concepts or techniques that are not explained until later sec­
tions. For example, in Chapter 6 there are listings of some elaborate programs that are
relevant to the material under discussion, but the programming methods used in the
programs are not described until later chapters. Furthermore, wherever possible, exam­
ples that illustrate a concept are chosen to have practical uses as well. This often
requires combining more techniques into an example than just the one currently being
studied. To alleviate this kind of problem, we include many cross-references between
the sections, and a subject index. And, of course, you are encouraged to jump around
in your reading. When you read about error-trapping in section 9.6, you can go back
and look at the program XARCHIVE in section 6.5.4 to see how it deals with errors.

Part I of HP 48 Insights touches only lightly on or omits altogether major HP 48 features
such as HP Solve, symbolic mathematics, and automated plotting. These topics are left
for the second volume of this series: HP48 Insights II: Problem-Solving Resources. Its
subject matter is the integrated systems of commands and interactive operations
represented by the menus named above the W , [i] , W , ~ , w , and W keys:
SOLVE, PLOT, SYMBOLIC, TIME, STAT, and UNITS. The intent is not to explore the
keyboard operations in great detail, since that is well covered in the owner's manuals,

-10-

Introduction 1.2

but rather to explain the underlying principles and structures, particularly so that you
can extend the built-in capabilities with programs that are listed in the book or that you
develop yourself. The treatment of HP 48 principles and programming in Part J is the
foundation from which you can explore the rest of the HP 48's capabilities.

1.3 Notation
In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

• All calculator commands and displayed results that appear in the text are printed in
helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP 48 operations rather than any ordi­
nary English-language meanings.

• Italics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG' STO means that 123 is stored in the specific variable REG,
whereas 123 'name' STO indicates that the 123 is stored in a variable for which you
may ehoose any name you want. Similarly,« program » indicates an unspecified
program object; { numbers} might represent a list object containing numbers as its
clements.

Italics are also used for emphasis in ordinary text.

• HP 48 keys are displayed in helvetica characters surrounded by rectangular boxes,
e.g. IENTERI, lEV ALI , or IEEXI. The back-arrow key looks like this: ~, and the cur­
sor keys like these: @], [G , [1)] , and CSZJ .

• A shifted key is shown with the key name in a box preceded by a left-or right -shift
key picture, @Jl or ~, e.g. ~ITIMEI, or @JllpURGEI. A shifted key is identified by
the colored label above the key, rather than the label on the key itself--@J] ISOLVEI

rather than @Jl[1J .

• Menu keys for operations available in the various menus are printed with the key
labels surrounded by boxes drawn to suggest the reverse characters you see in the
display, like these: ~ SIGN~ or ~-LlST~ .

Examples of HP 48 operations take several forms. When appropriate, we will give step­
by-step instructions that include specific keystrokes and show the relevant levels of the
stack, with comments, as in the following sample:

- 11 -

1.3

Keystrokes:

123 IENTERI 456 IT] 1 :

Results:

Introduction

Comments:

579 Adding 123 and 456
returns 579 to level 1.

For better legibility, we don't show individual letters and digits in key boxes--we just
show 123 rather than OJ W W , and ABC rather than 0 0 [AJ [[] [CJ. Key boxes
are used for multi-letter keys on the keyboard and in menus.

In some cases, a printed listing of the stack contents isn't adequate, so we use an actual
HP 48-generated picture of the calculator display, such as this picture from Chapter 4:

RAD ~
{ HOME TEST} 05/30/93

3.14159265359
1111

The screen pictures in this book are taken from the HP 48GX. Usually, they will appear
the same on an HP 48SjSX, but in some cases the menu labels are different. This
should not affect the meaning or usefulness of the pictures for an HP48SjSX user.

A large number of the examples are presented in a more compact format than the key­
stroke example shown above. These examples consist of a sequence of HP 48 commands
and data that you are to execute, together with the stack objects that result from the
execution. The "right hand" symbol L~ is used as a shorthand for "the HP 48 returns ... "
In the compact format, the addition example is written as

123 456 + u 579

The L~ means "enter the objects and commands on the left, in left-to-right order, and
the HP 48 will give back--retum--the objects on the right." If there are multiple results,
they are listed to the right of the LT in the order in which they are returned. For exam­
ple,

ABC ROT SWAP u B A C

-12-

Introduction 1.3

indicates that B is returned to level 3, A to level 2, and C to level 1.

Because of the flexibility of the HP 48, there are usually several ways you can accom­
plish any given sequence, so we often don't specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right-side results by typing the left side as text into
the command line, then pressing IENTERI when you get to the L~ symbol.

The L~ symbol is also used in the stack diagrams that are part of most program listings.
The stack diagrams show how to set up stack objects for execution of the program,
where the objects to the left of the L~ are the "input" objects, and the objects following
the L~ are the program outputs.

The most elaborate "examples" in this book are programs. Each program is listed in a
box that includes a suggested program name, a stack diagram, the actual steps that
make up the program, and comments to help you understand the steps. The following
sample listing illustrates the various features of the format:

SAMPLE Sample Program Listing checksum

level 3 level .> ICl'el 1 I levell

"string" Imatrixl n IL," Imatrix'i

« A B - a b Start of program.
« Start of local variable procedure

IF C 0 Start of IF structure.

THEN 1 2 - n m
« Start of local variable procedure.

START E F Start of definite loop.

DO G UNTIL H END DO loop.

NEXT End of definite lOOp.

» End of local variable procedure.

ELSE I J

END End of IF structure.

» End of local variable procedure.

» End of program.

1. The name of the program (SAMPLE) is listed first, followed by an expanded ver­
sion of the name that is descriptive of its purpose. When you have entered the
listed program, you should store it in a variable with the specified name. If no
name is given, the program is just intended to illustrate some point in the text, and
there's no need to give it any particular name.

-13-

1.3 Introduction

2. The program's checksum is listed at the end of the name line, as a four-digit hexa­
decimal number. If you enter the program into your HP 48, you can verify that
you have entered it correctly by comparing the listed checksum with the value
returned by BYTES (section 12.5.1) for your program.

3. Below the program name is a stack diagram, that specifies the program's input and
output on the stack. The program arguments are shown to the left of the L~, and
the results to the right. In the example, the stack diagram indicates that the pro­
gram requires a string in level 3, a matrix in level 2, and a real number n in level
1, and returns a new matrix in level 1. The object symbols in the stack diagram
are as descriptive as possible, showing not only the required object type but also
the conceptual purpose of the objects. A stack diagram

length width height L~ volume

shows that a program takes three real numbers (no object delimiters) representing
length, width, and height, and returns another real number that is the volume.

4. The program listing is broken into lines, where eaeh line has one or more pro­
gram objects listed at the left, and explanatory comments on the right. There may
be just one object on a line, or several whenever the collective effect of the objects
is easy to follow. You do not have to use the same line breaks (or any at all)
when you enter the program.

5. Lists, embedded programs, and program structures start on a new line unless they
are short enough to fit entirely on one line. More frequently, each program or list
delimiter or structure word starts a new line. The sequences between the struc­
ture words are indented, so that the structure words stand out. In the case of
nested structures, each structure word of a particular structure is lined up verti­
cally at the same indentation from the left margin. (The structure word ~ does
not start a new line, but the local variable defining procedure that follows the ~
does start a new line.) Note that when you edit a program on the HP 48, the pro­
gram display follows these same conventions, within the limitation of the 22-
character display or printer width.

6. The eomments at the right of the listing describe the purpose or results of the
program lines at the left. If you are creating a program using a personal com­
puter text editor, you can include similar comments in your program, setting them
off from the program objeets using the @ delimiter (section 4.3.3.1). An espe­
cially useful "comment" is a description of the contents of the stack that are
obtained after the execution of a program line. In our listings, the stack contents
are distinguished from ordinary comments by enclosing the stack objects between
I I symbols. The leftmost object in the series is in the highest stack level; the
rightmost is in level 1. Thus

-14-

Introduction 1.3

la b c dl

indicates that the object a is in level 4, b in level 3, c in level 2, and d in level 1.

We recommend that you use similar conventions when developing and recording your
own programs. Whether you write programs out by hand and type them into the HP 48,
or use a personal computer to write programs and transfer them to the HP 48 via the
serial port, program stack diagrams and comments are invaluable for later understand­
ing and modification of the programs. Of course, there will be many occasions when
you create a program directly in the HP 48 command line without benefit of any pro­
gram listing. In these cases, we still recommend that you afterwards make a listing, or
copy the program to a personal computer file, so that you can recover the program if
you lose it for any reason.

1.4 Terminology
Finding useful terminology to describe a computer system like the HP 48 with new or
unusual features can be a substantial problem. We have to use existing English words
that are close to the meaning we wish to convey, but the dictionary definitions of the
words usually differ from their meanings as applied to the HP 48. Consider the word
object: for the HP 48, object means any of the mathematical or logical elements that con­
stitute the data and procedural building blocks of the RPL language, but you won't find
that meaning in a dictionary (although it is close to the definition used in mathematics).

Our solution to this difficulty is to provide precise definitions of any terms that we use
that are specific to the HP 48, and then use those definitions consistently throughout. In
some cases, the definitions we offer may differ from those used in the HP 48 manuals,
usually because we need more careful definitions to get across a particular point. For
example, the owners' manuals do not make a distinction between execute and evaluate.
We find that such a distinction is useful (section 3.3) because it simplifies the descrip­
tions of related subjects, such as the nature of global name objects (section 3.6.1).

Two other important terms that arise frequently are mode and environment. A mode is
a calculator setting, often associated with one or more flags (section 7.1), that deter­
mines how a particular keystroke or command will behave. For example, in polar mode,
complex numbers and vectors are displayed in polar coordinates rather than the usual
rectangular coordinates. An environment is a glorified mode, which determines the
entire calculator interface, including the display, key actions, and available operations.

The "home base" for the HP 48 is the standard environment. In this environment, the
display shows the status area, stack, and menu key labels. All keys are active, with their
ordinary labeled definitions. If you press ~ IPICTUREI , the HP 48 switches to the plot

-15-

1.4 Introduction

environment. Here the display is devoted to a graph or other picture, the menu keys are
restricted to a menu of plotting operations, and the remaining keys are either assigned
additional plot actions or are inactive altogether. Pressing [Qt[] returns to the standard
environment. Other environments include the EquationWriter, the MatrixWriter, and
the equation and statistics matrix catalogs.

While introducing and using this kind of specialized terminology, at the same time we
will be using an informal style that takes some liberties with the language to avoid
unnecessarily stilted descriptions. "You are in the program branch menu" is almost a
non-sequitur when taken out of context, but it reads more easily than "the current
HP 48 menu is the program branch menu," and its meaning is clear.

1.5 Easy to Use or Easy to Learn?
It would be nice if you could pick up the HP 48 and use all of its facilities without ever
referring to a manual. A common criticism of the HP 48 is that it takes a long time to
master, particularly by comparison with some of the graphics calculators made by other
manufacturers that have become popular in mathematics education at the pre-calculus
level. But these calculators obtain their ease of lcarning by having very limited compu­
tational capabilities and flexibility compared to the HP 48. Their general styles can be
characterized as "fingers in, eyes ouL" That is, you type in the arguments for an opera­
tion with your fingers, and read the results out with your eyes. If you want to reuse
those results in a subsequent calculation, thcn you type thcm in again. This is thc
antithesis of a stack-based calculator like the HP 48, which is designed so that the results
of any calculation are always availablc for further operations, so that you never have to
write anything down or retype previous entries.

It is also possible to make a calculator easy to learn by restricting its capabilities and by
constraining its operation so that there is one and only one way to do anything. If a
particular problem happens to "fit," then it is easy to solve. But if you want to do
something just a little different, you will find that "easy to learn" translates to "difficult
to use." For example, it is very easy to solve a quadratic equation by typing the three
polynomial coefficients into fields on a screen labeled a:, b:, and c: and pressing a
"solve" key. But what if the coefficients must themselves be calculated, or are already
stored in variables, or are embedded either implicitly or explicitly in an expression? A
calculator is hardly easy to use if it requires you to do most of the work on a problem
before you can start to use it.

The HP 48 approach is to provide a broad, very flexible set of computational capabili­
ties, many of which have never before been available on a handheld calculator. Further­
more, it is expressly designed for "linking" calculations together--the results of one cal­
culation are always ready to be used as input for another, even if you didn't know in

-16-

Introduction 1.5

advance that your work would proceed that way, and even if the calculator designers
didn't expect you to make that particular combination of calculations. These ideas are
what the HP 48 means by "ease-of-use."

-17-

2. RPN Principles

The HP 48, like most of its Hewlett-Packard calculator predecessors, presents a user
interface centered around a logic called "RPN," short for Reverse Polish Notatioll. If
you are unfamiliar with this logic, particularly if you are accustomed to so-called "alge­
braic" calculators, RPN may seem awkward and unfamiliar. In this chapter, we will
explain how RPN works, and why its virtues make it the choice for the HP 48.

When you are evaluating formulas out of a book, a calculator that uses "algebraic" entry
can be quite suitable, bccause in at least simple cases the keystrokes follow more-or-less
the order of the corresponding symbols in expressions written in common mathematical
notation. The algebraic stylc, however, is not well suited for exploratory calculation,
where you don't necessarily know what to do next until you see the results of previous
calculations--and you need those results as part of the next calculation. When you press
an algebraic calculator's 0 key to complete a calculation, you had better be sure that
you're finished, because the result you see in the display may vanish at the next keys­
troke.

The choice and design of an RPN system for a calculator arises from consideration of
one ccntral principle:

• 77w result oj any calculation, no matter how complicated, may be used as an input Jor
a subsequent calculation.

RPN calculators are designed to embody this principle, by providing a mechanism (the
"stack") whereby you can apply mathematical operations to data already entered into
the calculator. The results of thc operations arc also held indefinitely, so that they, in
turn, can be the input data for subsequent operations.

In the calculator world, the term Reverse Polish Notation, or more specifically, the
abbreviation "RPN," has come to mean "the way HP calculators work." RPN actually
i:> a mathematical notation; HP calculators provide an electronic implementation of the
notation. In RPN, mathematical functions are written aJter their arguments, not before
or between the arguments as in ordinary written expressions. The notation appears
strange, because we are not used to visualizing or writing expressions this way. How­
ever, when you actually evaluate an expression to a numerical value using pencil and
paper, you must revert to an order of operations that exactly corresponds to RPN. We
will illustrate this point by examining how mathematical expressions are evaluated.

-19-

2.1 RPN Principles

2.1 The Evaluation of Mathematical Expressions
A mathematical expression is an abstract representation of the calculation of a single
value. An expression combines data (numbers or other explicit quantities), variable
names, and functions. When you evaluate an expression, you perform all of the calcula­
tions represented by the expression. Examples of expressions are:

1+2

x+y+2z

sin [In (x + 2) I
x 3 + 4x2

- 6x + 2

We will confine our attention to expressions that can be formed from the mathematical
functions included in the HP 48: arithmetic operations, powers, roots, transcendental
functions, etc. Expressions like these have the property that they are equivalent to a sin­
gle value. That is, if you perform the calculations represented by an expression, you end
up with a single value as the result.

In our discussions, we will be using the following terms:

• A function is a mathematical operation that takes zero, one, or more values as input,
and returns one value.

• A value used by a function as "input" is called an argument.

• A value returned by a function as "output" is called a result.

• A mathematical variable is a symbol that stands for a value. Evaluating a variable
replaces the symbol with the value.

• Syntax is the set of rules that governs how data, variables, and functions may be
combined in an expression.

As an example of these concepts, consider the following expression:

sin [123 + 45 In (27 - 6) I

The expression contains the functions sin, In, +, -, and X (implied multiply between
the 45 and the In), and the numbers 123, 45, 27, and 6. The expression is written in
common mathematical notation, but notice that the order in which you read or write the
expression, i.e., left to right, does not correspond very well to the order you would use if
you were actually going to evaluate the expression with pencil and paper and function
tables. For example, although the In function precedes the quantity (27 - 6), you can't
actually compute (or look up) the logarithm until after you have computed the difference

-20-

RPN Principles 2.1

27 - 6. Similarly, the sin, which is the first function that appears in the expression, IS

actually the last that you will execute. You can not compute the sine until the entire
rest of the expression [123 + 45 In (27 - 6) 1 is evaluated.

The common mathematical notation that we are using here has been developed over the
centuries to present a readable picture of a mathematical expression that takes advan­
tage of a human's ability to view an entire expression at once and draw conclusions from
its structure. But the notation is not a very good prescription for actually evaluating an
expression--as you step through a calculation, you have to jump back and forth, match
parentheses, etc. to find the next step. As we will show now, converting an expression
into an orderly procedure for evaluation leads directly to RPN. First we'll adopt a uni­
form structure that treats all functions alike, then we'll turn it around to match actual
calculation order.

Common notation is not uniform because the notation differs for one-argument and
two-argument functions. In our sample expression, the one-argument functions sin, In,
and cos, are written ill front of their arguments ("prefix" notation), whereas the two­
argument functions + and - are written between their arguments ("infix"). Further­
more, there is an implied multiply between the 45 and the In that is not explicitly writ­
ten. Infix notation also leads to ambiguity. For example, does 1 + 2X 3 evaluate to 9 or
7'1 You either have to introduce extra parentheses, e.g. (1+2)X3 or 1+(2 X3), or use
~o-called precedence conventions that specify which functions are executed first in ambi­
guous situations. One of the drawbacks of non-RPN calculators is that there is no
universal standard for precedence, so you have to memorize the precedence rules of
each calculator you use.

A general-purpose form for functions is to write each function name followed by its
arguments contained in parentheses, as in J(x), /i(X,y) , etc. You can make expressions
more uniform by writing all of its functions in this prefix form:

sin (+ (123, X (45, In(- (27,6))))

In this notation, + (1,2) means "add 1 and 2"; X (1,2) means multiply 1 by 2; etc.

Writing expressions this way is called Polish notation, honoring the Polish logician, Jan
¥-ukasiweicz. Unfortunately, this notation appears practically unintelligible to people
accustomed to conventional notation. But it does show explicitly the hierarchical struc­
ture of the expression, which we will discuss later (section 3.5.2.1). Also, it is useful
because it is a step towards RPN. That is, you can obtain a form that corresponds more
closely to the actual order of evaluation of an expression by rewriting the Polish form so
that the function names follow their arguments' parentheses. For example, rewrite
+ (1,2) as (1,2) +. The example expression now becomes:

-21-

2.1 RPN Principles

«123, (45, «27,6) -) In) X) +) sin

In the expression now, Polish notation is replaced by Reverse Polish Notation. In this
form, the expression represents a step-by-step evaluation prescription for pencil-and­
paper or electronic calculation, that follows the left-to-right order of the expression. To
see this, consider an orderly pencil-and-paper method for evaluation:

• Start at the left of an RPN expression, and work to the right.

• When you come to a number, write it down below any previous numbers.

• When you come to a function, compute its value using the last number(s) you wrote
as its arguments. Erase the argument number(s), and then write the function value.

Thus, to calculate the example expression (keeping two decimal places):

Object What to do

123 Write 123

45 Write 45

27 Write 27

6 Write 6

Subtract 6 from 27

In Find In(21)

X Multiply 45 and 3.04

-22-

What you see

123

123
45

123
45
27

123
45
27
6

123
45
21

123
45
3.04

123
137.00

RPN Principles 2.1

+ Add 123 and 137.00 260.00

sin Take the sine of 2600 -.98

There are two things you can notice from this exercise:

• Whenever you encounter a function, you can execute it immediately because you
have already calculated its arguments .

• You can ignore parentheses. When you write an expression in RPN form, you don't
need parentheses, because there is no ambiguity of precedence--functions are always
executed left -to-right.

The latter point means that you can eliminate parentheses from the notation. Doing so,
the example becomes:

123 45 27 6 In X + Sill

2.2 Calculator RPN
An RPN calculator allows you to substitute an electronic medium for paper. The
calculator's IENTERI key is the equivalent of "write it down" in paper calculations. You
"write" a numher hy pressing the appropriate digit keys, then IENTERI , which terminates
digit entry and enters the number into the calculator's memory. The memory takes the
place of paper.

For cases where you need to have more than one number written down at a time, calcu­
lator memory is organized into a "stack." You can visualize the stack as a vertical
column of numbers, where the most recently entered numbers are at the bottom of the
column, and the oldest numbers at the top. Each new entry "pushes" previous entries
to higher stack levels. A function always operates on the latest stack entry or entries,
and replaces those entries with its result, where it is ready for use by the next function
to come along. If one or more entries are removed from the stack, older entries drop
down to fill in the vacant levels. Again, this is quite analogous to the pencil-and-paper
technique you used in the example.

To illustrate calculator RPN, redo the previous example on the HP48, with the numeri­
cal display mode set (2 FIX) for two decimal places:

·23·

2.2 RPN Principles

Keystrokes: Stack:

123!ENTER! 1 : 123.00

45!ENTER! 2: 123.00
1 : 45.00

27!ENTER! 3: 123.00
2: 45.00
1 : 27.00

6!ENTERI 4: 123.00
3: 45.00
2: 27.00
1 : 6.00

Q 3: 123.00
2: 45.00
1 : 21.00

~W[J 3: 123.00
2: 45.00
1 : 3.04

0 2: 123.00
1 : 137.00

IT] 1 : 260.00

~ 1 : -0.98

Note how

a. each number entered goes into level 1, raising the preceding numbers to higher
levels;

b. each function removes its argument or arguments from the stack, and returns a
new result to the stack.

Here you can see how a stack provides for the realization of the principle stated at the
start of Chapter 2, namely, that every result can be an argument. The stack acts as

-24-

•

•. j,

RPN Principles 2.2

central exchange, where each function expects to find its arguments. Since each func­
tion also returns its results to the stack, those results are automatically ready to be used
as arguments for the next function.

2.3 RPL RPN
Prior to the introduction of the HP28C in 1987, RPN calculators provided only a limited
form of RPN in which the stack was limited to four levels. This implementation is ade­
quate for many calculations, but has certain shortcomings:

• You can't routinely convert any expression into RPN, then execute it left to right.
Instead, you have to study the expression, looking for ways to avoid piling up more
than four stack entries at a time .

• Some calculations intrinsically require more than four entries, no matter how clever
you are. This means that you have to save one or more intermediate results in
storage registers, then recover them later for further stack operations.

A four-level RPN stack is a restriction quite analogous to the limit in most "algebraic"
calculators on the number of parentheses that you can nest in a calculation. Such limits
are an even greater nuisance than the stack level limit, since algebraic entry does not
lend itself well to passing the results of one calculation on to another.

The RPL system employed by the HP28 and the HP48 is a thorough implementation of
RPN, in which the number of stack levels is not fIXed. The staek grows and shrinks as
needed. The unlimited stack allows you to concentrate on the results of a calculation
without requiring extra mental effort to rearrange it to fit the constraints of a four-level
stack. Furthermore, the stack is a stack of general objects, not just of ordinary
numbers, so that calculations with extended objects such as matrices can be performed
in the same style as simple numerical calculations.

An important example of the multi-object-type stack is RPL's ability to intermix expres­
sions entered in algebraic syntax, with RPN operations. This ability is provided through
the use of algebraic objects, which are representations of expressions that you can enter
into the stack as single units. We discuss algebraic objects in more detail in later sec­
tions of this book; for now, you can consider them as the means by which you can calcu­
late using algebraic syntax.

In section 2.1 we showed how RPN is derived by considering the manner in which
expressions are actually evaluated. However, we do not mean to imply that a com­
pletely RPN approach is always the most convenient method of calculation. In fact, to
evaluate certain expressions like our example sin [123 + 45 In (27 - 6)], it is arguably
simpler to key in the expression in a manner that corresponds as nearly as possible to

-25-

2.3 RPN Principles

the written form, than to figure out the more efficient RPN keystrokes. RPN is most
useful for exploratory calculation, when you're not merely evaluating a predetermined
expression. RPL allows you to have the best of both worlds, by combining algebraic and
RPN logic as follows:

• If you know in advance the complete mathematical form of a calculation, enter it as
an algebraic object.

• If you are working out the solution to a problem, and don't know in advance all of
the steps, work through the problem with an RPN approach, applying functions to
the results as they appear.

• In both cases, the results are held on the stack ready for use in further calculations.

Our sample problem was originally expressed as an expression, so you can enter it as an
algebraic object:

'SIN(123+45*LN(27-6))' IENTERI

puts the algebraic object representing the expression into stack level 1. (Note that it is
the expression itself that is present, not its evaluated value; the ability to handle expres­
sions without first evaluating them is one of the unique and most powerful RPL calcula­
tor capabilities.) In this example, you are interested in the numerical value, so press
IEvAL!. This replaces the algebraic object with its value - .98. Actually, if this result
were all that is of interest, you could omit pressing IENTERI , and use IEVAL! to take the
expression directly from the command line and evaluate it.

Suppose, however, that at the beginning of the calculation you were only interested in
the expression 123 + 45 In (27 - 6). In that case, you would compute the value by enter­
ing

'123+45*LN(27-6)' EVAL G 260.00

Then, after obtaining this result, you realize that in addition to the value itself, you also
need to know the sine of the value. Because the result of the initial calculation is on the
stack, it is ready for further calculation. In this case, you can execute DUP to make a
copy of the number for later use, then SIN to compute the sine.

RPL calculators are unique in their ability to hold the results of algebraic expression
evaluation in a manner that allows you to apply additional operations to the results after
they are calculated. Algebraic entry calculators require that you know the entire course
of a calculation before you start; RPN calculators overcome that problem, but you must

-26-

RPN Principles 2.3

always mentally rearrange an expression into reverse Polish form as you proceed. The
HP 48 allows you to proceed with any mix of the two approaches that is appropriate for
the problem at hand.

-27-

3. Objects and Execution

In Chapter 2, we demonstrated how you perform calculations on the HP 48 by applying
functions to numbers that are present on a stack, which acts as the electronic equivalent
of a sheet of paper. This RPN system is very uniform and flexible, and there is no par­
ticular reason to restrict its use to real numbers and ordinary mathematical functions.
The HP 48 generalizes the RPN approach to problem solving in two ways:

• Real numbers are just one of several types of objects that the HP 48 can manipulate
on the stack and store in memory. (Several other English words might be substi­
tuted for object; item, unit, element, etc. The use of object for this purpose is com­
mon in mathematical jargon, and so that word is adopted for HP 48 terminology.)

• Mathematical functions are just one of scveral classes of HP 48 operations that can
be applied to numbers and other types of ohjects.

The terms object and operation are key terms for any discussion of the HP 48, and we
will study them in detail in this chapter. In addition, we will introduce the concept of
object execution, and the closely related term evaluation. In rough terms, operations are
"what things the HP 48 can do," and objects arc "what the HP 48 can do things to."
Execution and evaluation are the actual "doing."

We will usc these four words extensively throughout this book to make general state­
ments about HP48 principles, so it is important that you understand the meanings of
each. If you find occasionally that the statements are too abstract, you can relate them
to more familiar ideas by substituting concrete examples for the general terms. For
example, when we refer to an object, you can think of a number as an example; for an
operation, think of an ordinary math function like + or sine. Execution is the "activa­
tion" of an object--think of running a program. Evaluation differs from execution only
for algebraic and list objects: execution treats these types of objects as data and merely
returns them to the stack; evaluation actually performs sequences of calculations defined
by the objects.

3.1 Operations
"What things the HP 48 can do" make up a very long list, and constitute the subject
matter of most of this book. Here we will concentrate on defining the different types of
operations, to facilitate later discussions.

We use the term operation to mean any of the built-in capabilities of the calculator.
Most calculator manuals use the term function for this purpose. In describing the
HP 48, the term operation is preferable, reserving functions to mean a specific group of

-29-

3.1 Objects and Execution

HP 48 operations that correspond to the mathematical meaning of function.

There are two basic methods by which you can make the HP 48 "do" something; that is,
perform an operation .

• Find the key that is labeled with the name or symbol for an operation, and press it.
Many important operations, such as the arithmetic operators, or STO and EVAL, are
permanently available on the keyboard. The remaining operations are available as
menu keys .

• Spell out the operation's name in the command line, then press IENTERI. ENTER on
the HP 48 plays a role that combines its original RPN calculator purpose of ending
number entry with a more sophisticated meaning of "do these commands." ENTER
is explored in detail in section 4.3.3.

HP 48 operations are classified as follows:

1. An operation can be a command or a manual operation, according to whether it is
programmable or non-programmable, respectively. A command has a specific
name, so that you can

• execute the command by typing its name into the command line .

• include the command in a program that you write.

Manual operations don't have names that you can spell out or include in a pro­
gram; you can only execute a manual operation by pressing a key. Examples are
IENTERI, @:i]IEDITI , and =SOLVR= .

2. Programmable operations--commands--are sorted into two classes. If a command
can be included in the definition of an algebraic object, it is called a ftmction.
Examples of functions are +, SIN, LOG, and NOT. Commands that are not
allowed in algebraics are called RPN commands. These commands, such as DUP,
STO, or RDZ (randomize), are typically stack or memory operations that make no
sense in the context of an algebraic object, which is the HP 48 calculator represen­
tation of a mathematical expression or equation. The logic of expressions
demands that every part of an expression (including the entire expression itself)
can be evaluated to a single value. So for an HP 48 command to be included in an
algebraic object, it must act like a mathematical function--use zero or more values
as input, and always return exactly one result.

3. The final classification of HP 48 operations is the division of functions into two
categories: analytic and non-analytic. Analytic functions are those for which the
HP 48 knows the derivative and inverse. "Knowing" the inverse of a function f
means the HP48 can automatically solve the equation f (x) = y for x. (In
mathematics, an analytic function is continuous and differentiable, which

-30-

Objects and Execution 3.1

corresponds more-or-less to the HP 48 meaning of analytic function. For various
reasons, the HP 48 does not provide derivatives and/or inverses for every function
that is analytic mathematically. % is an example of a well-behaved function for
which no built-in derivative is provided. On the other hand, the function ABS can
be differentiated on the HP 48; even though it is not properly differentiable at
zero.)

The main reasons for sorting HP 48 operations into these categories is to make possible
general statements about various classes of operations, and to provide information about
individual operations without unnecessary repetition. Thus when we refer to OUP as an
RPN command, we are reminding you that OUP is programmable, but not allowed in an
algebraic expression.

3.2 Objects
The HP 48 provides 18 distinct types of objects that can be created and manipulated
with ordinary built-in operations. These object types are listed by their type numbers
(as returned by the commands TYPE and VTYPE) in Table 3.1. In addition, there are
twelve system object types, including seven that are actually used by the HP 48 in internal
calculations, and five provided for future extensions. You won't normally see any of
these while using only built-in operations, but add-in software may bring them to light.

The word object is the collective term for all of the different items listed in the table.
This list does not contain all imaginable object types; these are just the types that you
can create and use on the HP 48. In the abstract, an object is a collection of data or
procedures that can be treated as a single logical entity. In practical HP 48 terms, this
means that an object is something that you can put on the stack.

Most objects are identified in the HP 48 by their characteristic delimiters, which are just
the symbols #, ", " etc., which you enter to tell the calculator what type of object you
are entering, and where it starts and stops. (If you enter a string of characters without
any delimiters, the HP 48 attempts to interpret it as a real number, or failing that, as a
name or command.) Similarly, the calculator uses the same delimiters when it displays
an already entered object so that you can recognize its type.

An individual object is characterized by its type and its value. The type (number, array,
etc.) indicates the general nature and behavior of the object. The value distinguishes
one object from another of the same type. For a real number object, the value is its
simple numerical value. For a string, the value is the text characters in the string. For
a program, the "value" is the sequence of objects and commands that make up the pro­
gram. For lists, programs, and algebraic objects, which are made up of other objects,
we will use the term definition rather than value.

·31-

3.2 Objects and Execution

Table 3.1. HP 48 Objects

TYPE Number Object Type Identification

0 Real number digits

1 Complex number (real number, real number)

2 String (text) "characters"
C$ n characters (command line)

3 Real array (vector/matrix) [real numbers]

4 Complex array (vector/matrix) [complex numbers]

5 List { objects}

6 Global name characters'f I
I

7 Local name characterst I;
8 Program « objects » I

9 Algebraic object ' objects'

Ii 10 Binary integer number #digits

"
11 Graphics object Gra8hic n X m (stack)

'i

GR B n m data (command line)

12 Tagged object characters: object (stack)
\' :characters: object (command line) \:

13 Unit object number_units

14 XLIB name characters (library present)
XUB n, m (library missing)

15 Directory DIR name object ... END

16 Library object Library n: Title

17 Backup object Backup characters

t Names can be entered with or without' , delimiters. See section 3.7.

·32-

Objects and Execution 3.2

A central theme of the HP 48 is its uniform treatment of different object types. This
means that the basic calculation process--applying operations to objects on the stack--is
the same for every object type:

• Each stack level holds one object, regardless of type.

• The stack commands to copy, reorder, and discard objects are the same for all
object types.

• The processes of storing (naming), recalling, and executing are the same for all
object types.

• The same operation can be applied to as many different object types as make sense
for the operation.

These points have the very practical consequence of simplifying the learning and usc of
the HP 4~, for once you learn how an operation works for one object type, you automat­
ically know how to use it for any other object types to which it might apply. For exam­
ple, if you learn RPN arithmetic for real numbers, you don't have to learn anything new
to do arithmetic with complex numbers or arrays--the steps and logic arc the same.
There is no such thing as "complex mode" or "matrix mode" on the HP 48.

3.2.1 Operations as Objects
You might ordinarily think of operations as actions, and objects as the targets or results
of the actions. However, the existence of object types that are not simple data--names,
algebraic objects, and programs--blurs this distinction. As a matter of fact, all HP 48
commands are just built-in program objects. To demonstrate that a command is an
object, you can put it on the stack. Try this (you must start with the + in a list to
prevent its execution):

2 {+} HEAD Q3·

{ HOME}

4:
3: 1
2: 2
1: +
IITmlHDmDmHlmIlmiM

You now see the object + in level 1. If you next press !EVALI , the + is executed, adding

-33-

3.2 Objects and Execution

the 1 and 2 you entered previously and leaving the result 3. This technique works for
any command.

This brings us to the subject of execution: when is an object "passive" --like the + just
waiting on the stack, for example--and when is it "active"--like the + actually perform­
ing the addition?

3.3 Execution and Evaluation
We have generalized the concept of an object to include not only data objects but also
user-defined programs and expressions, and built-in operations. We now similarly
define execution as the general term for the activation of an object: to execute an object
means to perform the "action" associated with that object. In the next sections, we will
look at the various actions associated with the different object types.

Most object types are considered as data, for which execution simply means "put the
object on the stack." Five object types have a more energetic definition of execution:

• Executing a local name means to recall an object stored in a local variable (section
9.7) to the stack.

• Executing a lilobal flame means to execute an object stored in a global variable (sec­
tion 5.1).

• Executing an XLIB name means to execute an object stored in a library--an exten­
sion to the calculator's built-in operation set (section 6.4.3).

• Executing a program means to execute the objects that make up the program's defin­
ition.

• Executing a system code object executes the assembly language program that defines
the object.

Lists and algebraic objects are defined, like programs, by a sequence of other objects (in
fact, the internal structures of lists, programs, and algebraic objects are identical). Col­
lectively, the three types of objects are called composite objects. The HP 48 provides a
second form of execution, called evaluation, in which composite objects of any type are
executed like programs--the objects that make up a composite object are executed
sequentially. For non-composite objects, evaluation and execution are synonymous.

The primary means of evaluating an object is the EVAL command, which evaluates the
object in level 1, e.g.

-34-

Objects and Execution 3.3

3 EVAL L""l'" 3

'1 +2' EVAL L"i" 3

{ 1 2 + } EVAL L""l'" 3

« 1 2 + » EVAL L""l'" 3

The use of the term evaluation arises from its meaning of performing the calculations
represented symbolically by an algebraic expression to obtain the value of expression.
In addition to EVAL, algebraic objects are evaluated by ~NUM, plus several other com­
mands that deal with expressions' values, such as f, DRAW, and ROOT. EVAL is the
only means of evaluating a list.

3.3.1 When are Objects Executed?
Before studying the execution actions of the various object types, it is helpful to review
the circumstances under which objects are executed or evaluated. It is not unreasonable
to say that object execution takes place all the time while the HP 48 is on, since virtually
any HP 48 activity--interpreting keystrokes, displaying objects, printing, ete.--can he
viewed as the automatic execution of built-in program objects. However, of most
interest are the times when objects are executed under your direction, particularly
objects that you have created. These times arc as follows:

1. Execution

• When you execute ENTER (section 4.3.3), each object specified in the com­
mand line is executed, in the order in which it appears in the command line.
You can prevent execution of names or programs in the command line by
enclosing them in their respective delimiters ' , or « », as discussed in sec­
tion 3.8.

• When a program is executed, the objects that make up the program are exe­
cuted, following the same rules as command line execution.

• When a global name (section 3.6.1) is executed, the object stored in the
corresponding variable is executed. (Execution of a local name merely recalls
the stored object.)

• When an XLIB name is executed, the named object in a library is executed.

2. Evaluation

• EVAL removes the object in level 1 from the stack and evaluates it. This is the
most common means for evaluating an object after it is placed on the stack.

-35-

3.3 Objects and Execution

• -NUM is similar to EVAL, except that it invokes numerical execution mode
(section 3.5.6.2), and does not evaluate lists.

• QUAD, ROOT, SHOW, TAYLR, a, and J also evaluate their stack arguments.

• HP Solve and DRAW cause evaluation of the current equation specified in the
variable EQ.

• Commands such as PUT or SUB that use a list containing real numbers as an
argument numerically evaluate (-NUM) the objects in the list to convert them
to real numbers.

• Program structure words such as THEN, that take a flag value from the stack,
evaluate algebraic object arguments to obtain a numeric flag value.

• The conditionals 1FT and IFTE evaluate the stack object selected by the value
of the stack flag (section 7.1).

It is useful to sort HP48 objects into three classes of objects: data, name, and procedure.
This classification is made according to an object's behavior when it is executed or
evaluated. Most types of objects arc data class objects, which just put themselves on the
stack when executed. The execution of name class objects (global, local, and XLIB
names) causes the recall or execution of stored objects. Procedures arc composite
objects; their evaluation causes the sequential execution of the objects contained in the
procedures.

Lists and algebraic objects classify differently depending on whether they arc executed
or evaluated. Because lists are primarily used as data (the contents of lists arc usually
not appropriate for sequential execution), we shall consider them as data class objects,
which occasionally arc made to act as procedures by EVAL. Algebraic objects are
always suitable for evaluation, so we will consider them as procedures while keeping in
mind that they act as data objects when executed.

3.4 Data Objects
The idea of a data object should be quite familiar to you, since data objects are the only
quantities that can be manipulated as objects by other calculators (except for the HP 28)
and BASIC computers. The archetype data object is a floating-point real number. More
generally, an HP 48 data object is the calculator's representation of a mathematical or
logical data entity such as a number, a vector, or a character string.

You would not expect a data object to be able to do anything; rather, it exists to have
things done to it. Nevertheless, data objects do have an execution action: they just enter
themselves onto the stack. When you type in a number, for example, and press IENTERI ,

-36-

Objects and Execution 3.4

the number object is executed and so ends up in level 1. When a data object is already
on the stack and you execute EVAL, nothing apparently happens. Actually, EVAL
removes the object and executes it, which puts it right back on the stack. Note that
classifying an object as "data" does not imply that the object is small or simple--a direc­
tory is a data class object, but it can occupy any amount of memory and have a very
complex structure.

The HP 48 data object class includes the following types: real number, complex number,
string, real array, complex array, list, binary integer, graphics object, tagged object, unit
object, directory, library, and backup object, plus all of the system object types except
the code object.

3.4.1 Real Numbers
A real number object is the HP4Ws version of an ordinary real decimal number. The
number value of the object is stored in floating-point representation, as a combination of
a 12-digit mantissa (xllOIP(log I x I l) between 1 and 9.99999999999, and a 3-digit cxponcnt
(IP(log I x I)) between - 499 and + 499. That is, a number is represented as

nwntissa X 1 Q('X!,ol1('1lI •

When the HP 48 is in scientific number display mode (SCI), you can sec the mantissa
and exponcnt explicitly; for example, the numher 1.234 X 1023 is displayed as
1.23400000000E23. The E is a one-character symbol for "X 10 to the power. .. "

When the HP 48 performs internal calculations during the execution of mathematical
functions, real numbers arc expanded to fifteen-digit mantissas and five-digit exponents,
and all of the calculations arc carried out to that accuracy. Functions' results are
rounded back to twelve-digit mantissas and three-digit exponents when they are returned
to the stack. Note that this does not imply that calculations involving multiple functions
arc always accurate to twelve digits. The error derived from rounding intermediate
results to twelve digits accumulates as each new function executes on the result of the
previous one.

Real numbers are entered and displayed without any delimiters. In the command line, a
real number is a consecutive sequence of decimal digits, optionally including a leading +
or -, a fraction mark (decimal point), and/or an "E" followed by an optional + or - to
mark the start of the exponent field .

• If you enter more than 12 digits in the mantissa, the resulting exponent will take the
extra digits into account, but the mantissa is rounded to 12 digits:

9999999999999 L~ 1.00000000000E13

-37-

3.4 Objects and Execution

• Entering more than three digits in the exponent causes a syntax error.

• In FIX display mode, real numbers displayed on the stack are shown with digit-group
commas (periods when flag - 51 is set). However, you can not include such commas
when you enter numbers in the command line, since the commas are interpreted as
object separators:

123,456,789 Ill" 123 456 789.

3.4.2 Complex Numbers
Complex number objects consist of two real numbers combined as an ordered pair (x,y).
They have two primary uses:

• To represent complex numbers, wherc the first number in each ordered pair is the
real part of a complex number, and the second number is the imaginary part. A
complex number object (x,y) corresponds to the complex number z = x + yi, where
x = Rez and y = Imz. The object (3,2) represents the complex number 3+ 2i.
Complex number objects obey the rules of complex number arithmetic; for example,

(1,2) (3,4) + L;T (4,6).

• To represent the coordinates of points in two dimensions, such as points used in
conjunction with HP 4R plotting (10.3). The real part (the first number of the pair)
of the complex number is the horizontal coordinate of the point, and the imaginary
part (the second number) is the vertical coordinate. In this context, complex
numbers act as two-dimensional vectors, and arc suitable for vector addition and
subtraction. However, other common vector operations, such as dot and cross pro­
ducts, are not defined for the complex number object type; for those purposes, you
must use vector objects.

The standard entry form for a complex number is (x,y): matched parentheses surround­
ing two real numbers x and y, separated by a space, comma, or semicolon. After entry,
the numbers are displayed separated by a comma if flag - 51 is clear, or a semicolon if
the flag is set.

The numbers can also be interpreted as the absolute value r and phase e, by separating
them with an angle sign A, i.e. (r Ae). Similarly, the default for stack display of com­
plex numbers is rectangular format, but you can obtain a polar form display by selecting
polar coordinate mode (section 11.3.1). However, regardless of how they are entered or
displayed, complex numbers are always stored in memory in rectangular coordinates, so
that in polar displays r is always positive, and e is normalized to the range - 1800 to
+ 180°.

·38-

Objects and Execution 3.4

When you enter a complex number within an algebraic object, you must separate the
real and imaginary parts (or the absolute value and phase) with a comma or a semi­
colon. The real and imaginary parts can be symbolic expressions as well as real
numbers, although symbolic complex numbers entered in polar form are automatically
converted to rectangular form:

'(R, .{e)' IL,T '(R *cOS(e),R *SIN(e)'

Furthermore, any subexpression of the form exprl + expr2 *i is displayed as
(exprl,expr2):

'A+B*i' UJ '(A,B)'.

Like the polar form display of complex numbers or vectors, this representation of sym­
bolic complex numbers is a display form only; the number is always stored in memory as
a sum of real and imaginary parts, as you can see by taking the symbolic number apart
(see section 3.5.2.1):

'(A,B)' OBJ~ IL,T 'A' 'B*i' 2 +

This reveals that the expression is the sum of A and B *i. You can choose to display
symbolic complex numbers in the sum representation by setting flag -27 (this flag is not
defined on the HP48S/SX).

There are two ways to combine two real numbers into a complex number or vice-versa.
First, the command ~V2 (with flag -19 set), creates a complex number from two real
numbers that represent the real and imaginary parts, or the magnitude and phase,
according to the current angle and coordinate modes (section 11.3.1). The reverse
operation is V~:

RECl 2 ~V2 IL,T (1,2)
CYLIN 45 ~V2 IL,T (1,'{45)

RECl (20,30) V~ IL,T 20 30
CYLIN (1,'{45) V~ IL,T 45
(1,1) DEG CYLIN V~ IL,T 1.41421356237 45

If flag -19 IS clear, ~V2 will create a vector (section 11.3.1) rather than a complex
number.

-39-

3.4 Objects and Execution

The commands R~C (Real-to-Complex) and C~R (Complex-to-Real) assemble and
disassemble complex numbers without regard to the current angle or coordinate modes.
Their the real number arguments and results are always the real and imaginary parts of
the complex number:

(1,2)
DEG
3 4

C~R

(1, ,(45)
R~C

2
.707106781187
(3,4)

.707106781187

You can also decompose a complex number with OSJ~, which is equivalent to C~R for
complex numbers.

HP 48 mathematical functions treat real number and complex number objects in a very
uniform manner. That is, you can intermix the two object types in almost any calcula­
tion involving arithmetic, trigonometric, logarithmic, or exponential functions. Two­
argument functions return complex results if either argument is complex:

3 (2,3) * ~ I (6,9).

The result of a singlc-argument function may he real or complex, according to the argu­
ment type and the appropriate mathematics. The functions RE (real part), 1M (ima­
ginary part), ARG, and ASS always return real number objects. A trigonometric, loga­
rithmic, exponential, power or root function applied to a complex argument always
returns a complex results, e.g.:

(0,2) V "-7 (1,1).

Such functions applied to real arguments may return either a real or a complex result.
For example,

DEG .5 ASIN CJ 30,

but

DEG 2 ASIN G (1.57079632679, - L31695789692).

On most other calculators, the last example would cause an error. The HP 48's
integrated treatment of real and complex numbers means that you can write programs
that work equally well for real and complex inputs and outputs. However, it also means
that you may have to include explicit range testing in a program that you want to stop

-40-

Objects and Execution 3.4

when a calculation strays out of the real number domain.

You should note that the last example gives the same result regardless of whether the
HP48 is in degrees mode or radians mode. Trigonometric functions consider all com­
plex arguments and results to be expressed in radians.

3.4.3 Strings
String objects (object type 2) are character sequences that are interpreted as simple text.
Strings are identified by the double quote delimiters " ". The characters within the
quotes can be any HP 48 characters, including the other delimiter characters, which have
no special meaning in a string. You can use string objects to prompt for input or label
output, or as data to be processed logically, such as names to be alphabetized by a sort­
ing routine (section 11.4.3). The sequence "text" DROP can act as a program "comment"
that has no computational significance but helps you to document a portion of a pro­
gram. If you write or keep programs (or any object types) on a personal computer, the
comment delimiter "((i)" provides a better commenting method.

Strings are normally entered and edited by surrounding a sequence of characters with
double quotes, e.g. "ABCDEF". However, if you want to enter a string object in which
one or more of the characters are double quotes, you can usc the alternate command
line forms

C$ n characters
or

C$ $ characters

The first of these "counted string" forms makes a string object using the first n charac­
ters in the command line after the number Il (not counting the first space or other non­
numeric character after the n):

C$ 10 ABCD"EFGHI G" "ABCD"EFGHI"

C$ 2ABC123 n "BC" 123

When you edit a string object that contains double quote characters, it always appears in
the command line in this counted string form.

The second counted string form uses all of the remaining characters 111 the command
line following the C$ $:

-41-

3.4 Objects and Execution

C$ $ ABCDEFG L~ "ABCDEFG"

In this case, there must be a space after the second $.

3.4.3.1 Concatenation
One of the most common string operations is concatenation, the appending of one string
to another. This is achieved on the HP 48 by the + command, which appends a string
object in level 1 to the end of a string in level 2:

"ABC" "DEF" + L~ "ABCDEF"

String concatenation does not require both arguments of + to be strings; if either argu­
ment is a string, the non-string object (unless it is a list--see section 11.4.1) is automati­
cally converted to a string (as by ~STR) and then concatenated to the other argument:

STD "Result = " 10 + U' "Result = 10"

3.4.3.2 String Comparisons
String objects can be compared (ordered) by using any of the six comparison operators
= =, oft, <, >, :S, and 2: (section 9.3.l). Comparisons are made on a character-by­
character basis, where pairs of characters are compared according to their character
codes. The character code is a number from 0 through 255, that represents the number
of a character in the ISO 8859 Latin 1 character set used by the HP 48. Two strings are
equal if they contain the same characters in the same order. string 1 is "less than"
string2 if the first character from the left that is not the same in both strings has a
smaller character code in string 1 than in string 2. The following sequence orders two
strings so that the "smaller" is returned to level 2:

DUP2 IF > THEN SWAP END

Since lower-case letters have different character codes (97 -122) than upper-case letters
(65-90), alphabetization done with> or < is case-sensitive.

3.4.3.3 Other String Manipulation Commands
Several additional commands are provided in the ~ ICHARSI menu for simple string
manipulations.

• OBJ~ with a string argument (same as STR~) is a programmable form of ENTER,
that "executes" the string object as if the string characters were entered in the com­
mand line:

-42·

Objects and Execution 3.4

"123 456 +" OBJ~ n 579

OBJ~ is useful in programs for creating objects (like other programs) by concatenat­
ing strings representing parts of the objects.

• ~STR converts any object to a string object, where the string characters represent
the display form of the object:

(1 ,2) ~STR ~~ "(1,2)"

(If the object is already a string, ~STR has no effect.) Note that since ~STR
respects the current number display modes, the combination ~STR OBJ~ does not
necessarily leave an object unchanged unless the current number display mode is
STD, and the binary integer wordsize is 64 bits.

• SIZE returns the number of characters in a string:

"ABCDJ;FG" SIZELT 7.

• POS (POSition) finds the position of one string (level 1) within another (level 2):

"ABCDEF" "CDE" POS rr:1 3.

The position is counted from the left, starting with the first character as position 1.
POS returns 0 if the second string is not contained within the first.

• REPL (replace) overwrites a portion of a string (level 3) with another string (level 1),
starting at a specified position (level 2). Call the target string string 1 (length 11), the
replacement string string2 (length 12), and the position n. Then for

n +/2 -1>/),

string 2 is concatenated to string 1:

"ABCDE" 10 "FG" REPL n "ABCDEFG"

characters n through n + 12 - 1 are replaced; the remaining 11 -/2
characters in string 1 are unchanged:

"ABCDE" 2 "FG" REPL ~~ "AFGDE"

characters n through 11 are replaced, and the leftover 12 - (11 -n)
characters from the end of string2 are concatenated, so that the
result string has n + 12 - 1 characters:

"ABCDE" 5 "FG" REPL n "ABCDFG"

-43-

3.4 Objects and Execution

n=O, the Bad Argument Value error is reported.

• SUB extracts a substring from a string (level 3), where the start and end character
positions are specified in level 2 and level 1:

"ABCDEFG" 3 7 SUB G "CDEFG"

A character position argument less than 1 is treated the same as 1; a position greater
than the string length is treated as that length. A null string is returned if the speci­
fied end position is less than the start position.

• HEAD extracts the first character of a string:

"ABCDEFG" HEAD it"" "A"

• TAl L removes the first character from a string:

"ABCDEFG" TAIL G "BCDEFG"

• NUM returns the character code of the first character in a string:

"ABCDEF" NUM Q] 65

• CHR produces a one-character string, where the character is specified by its charac­
ter code:

189 CHR 17 "Yc"

CHR provides one means of entering certain seldom-used characters, such as the Y:
shown in the example, that are not available on the keyboard. Any HP48 character
can be entered from the character browser activated by ~-CHARS- .

3.4.4 Arrays
Array objects (object types 3 and 4) are the HP 48 representation of real or complex
vectors (one-dimensional arrays) and matrices (two-dimensional). Arrays are identified
in the command line and in the stack display by the square-bracket delimiters []. A
sequence of numbers surrounded by a single pair of brackets is a vector. A sequence of
vectors surrounded by an additional pair of brackets is a matrix, where each vector is
one row of the matrix.

Arrays can be either real (type 3) or complex (type 4). In a real array all of the ele­
ments are real numbers; in a complex array the elements are complex numbers. As in
the case of number (scalar) objects, you can intermix real and complex arrays in calcula­
tions. You can also combine numbers and arrays for many operations, where it makes

-44-

Objects and Execution 3.4

mathematical sense. For example,

2 [1 2] * n [2 4].

However, you can't add a number to an array, since that is not a mathematically defined
operation.

Arrays are discussed at more length in Chapter 11.

3.4.5 Lists
A list object (type 5) consists of a series of any types of objects entered between { } del­
imiters. The primary purpose of lists is to allow two or more objects to be manipulated
together as a single data object. Automatic list processing, a new feature on the
HP48G/GX (see section 3.5.5.1), enables commands to be applied to a series of argu­
ments. Lists are described in detail in Chapter 11, and are used in numerous program
examples throughout this book.

3.4.6 Binary Integers
Binary integer objects represent unsigned integer numbers, stored as sequences of binary
bits (rather than decimal digits as for floating-point numbers). The maximum value of a
binary integer is the hexadecimal number FFFFFFFFFFFFFFFF, corresponding to 64
binary 1's.

In addition to their immediate use for performing integer arithmetic, binary integers are
used in the HP 48 for

• a modest set of bit-shifting and logic commands common to computer science appli-
cations, provided in the base menu (IMTHI:::oBASE:::o);

• encoding the user and system flags (section 7.1);

• representing graphic object pixel numbers (section 10.3);

• computing object checksums (section 12.5.1).

For the four arithmetic operations, you can intermix binary integer and real number
arguments--the results will be binary integers.

You can control the entry and display of binary integers by executing one of the base
mode commands BIN (binary, base 2), OCT (octal, base 8), DEC (decimal, base 10) or
HEX (hexadecimal, base 16). To enter a binary integer, type the # delimiter followed
by the number digits. The digits are interpreted according to the current base; in hexa­
decimal mode, for example, you can use digits 0-9 and A-F. You can override the

-45-

3.4 Objects and Execution

current base by adding a lower-case letter b, 0, d, or h immediately after the' number
digits. The objects are always displayed in the current base, including the trailing letter
that identifies the base, regardless of how they were entered.

When a binary integer is entered, it is always created with 64-bit precision. However,
integer operations and display are limited by the current wordsize, a number from 1
through 64 (the default is 64). STWS sets the wordsize from a real number argument;
RCWS returns the current wordsize as a real number. The stack display of binary
integers shows only the least significant wordsize bits, e.g.

HEX 10 STWS #FFFFh G #3FFh.

At this point, the number has not actually been truncated to 10 bits--if you execute 64
STWS you will see #FFFF. However, all arithmetic and logical commands that work
with binary integers truncate their arguments to the current wordsize before performing
their operations, and return results truncated to the wordsize. If you multiply the
#FFFh above by 1, then set the wordsize to 64, you will see #3FF, since the multiplica­
tion truncated the arguments and results. The truncation actually shortens the binary
integer to the specified number of bits, rather than just setting the most significant bits
to zero:

12 STWS #FFFh DUP * L'r #FFFh #FFFh,

Herc we have two binary integers with the same numerical value. However, BYTES
(section 12.5.1) applied to those two arguments returns memory sizes differing by 6.5
bytes (and different checksums), showing that one is 52 bits (6.5 x 8) longer than the
other.

3.4.7 Graphics Objects
A graphics object (object type 11), or grob for short, encodes a display picture. It is
defined by its dimensiolls--width x height--and the picture data. The data consists of
one binary bit for each pixel, where 1 is "on" and 0 is "off', plus some additional bits
that pad the data so that each pixel row is an integer number of bytes. Grobs are not
restricted to the 131 X 64 pixels display size--they can range from 1 X 1 (actually, you can
make a 0 X 0 grob, but it has no particular use).

Graphics objects are most frequently created by an operation such as DRAW, but you
can create them in the command line. The command line format is

GROB width height '" data ...

-46-

Objects and Execution 3.4

GROB is the "delimiter" that identifies the start of a graphics object.

width is a real number indicating the horizontal width of the grob, in pixels.

height is a real number indicating the vertical height of the grob, in pixels .

. . . data . .. is a sequence of hexadecimal digits O-F that represent the pixel data in
a "readable" form.

The readable data consists of the data for each pixel row concatenated together into one
long sequence, in top-to-bottom order. Each hexadecimal digit represents four pixels; if
you consider a digit as a four-bit binary number, you can translate its value to a left-to­
right pixel pattern by reversing the order of the bits. The digit A, for example,
represents the pixel pattern OlD1, where 0 is an "off" pixel, and 1 is "on." The last one
or two digits in each row may be "padded" with zeros, in order to make each rowan
integer number of bytes. Thus the smallest grobs are GROB 1 1 00 and GROB 1 1 10,
which are 1 X 1 grobs--the first has its one pixel off, and the second has its one pixel on.

There are a wealth of operations related to the creation and manipulation of graphics
objects. These are described in section lD.3.

3.4.8 Tagged Objects
Tagged objects (object type 12) are objects used for putting visible labels on stack
objects. That is, a tagged object contains a single object of any type together with a
character string that labels the object. In our discussions of tagged objects, we'll use the
following terms:

• A tag is any character string. To tag an object is to combine it with a tag into a
tagged object.

• An un tagged object refers to the object inside a tagged object, when it is thought of
as a separate object.

• A tagged object is then an object that contains a tag and an untagged object.

Thus for :ABC: 12345, the tag is ABC, the untagged object is the real number 12345,
and the combination :ABC:12345 is the tagged object. This terminology may be confus­
ing, but fortunately the design of tagged objects is such that you can generally use an
object in calculations with or without a tag, disregarding the distinctions.

When a tagged object appears on the stack, it is displayed as tag: object, where tag is the
label string, and object is the usual display of the object. You can create tagged objects
in the command line by typing the tag string, surrounded by : : delimiters, followed by
the tagged object in its ordinary syntax:

-47-

Objects and Execution 3.4

• TYPE returns type 12 for tagged objects.

These properties mean that you can use a tagged object interchangeably with an
untagged object of the same type as the tagged object. For example,

:Length:10_m :Area:100_m"2 * ''Volume'' ~TAG U' :Volume:1000_m"3

Here the * automatically strips the tags from the the length and area values before mul­
tiplying them to obtain the volume.

Further illustrations of the uses of tagged objects are given in section 12.7.1.

3.4.9 Unit Objects
Unit objects (object type 13) are the basic components of HP 48 unit management--its
ability to perform mathematical operations on quantities that include physical dimen­
sions. Unit management is discussed in Part fl.

A unit object consists of a magnitude and a unit expression joined by the delimiter _ in
the format magnitude_expression. The magnitude is a real number; the unit expression is
an algebraic expression consisting of products of unit names raised to various powers. If
any of the powers are negative, the expression is defined as a single numerator that is
the product of names with positive powers, divided by a denominator that is the product
of the names with negative powers, expressed then with positive exponents. For exam­

ple, 1m 2s- 2K- 1 is represented by the unit object 1_m"2j(s"2*K). Because there is no
closing delimiter on the unit expression, you must enter the expression immediately after
the _, and it may contain no spaces (there can be spaces between the magnitude and the
-).

Unlike other object delimiters, the underscore _ is also a junction. This allows the
straightforward use of the EquationWriter for unit object entry. _ takes two arguments,
which may be real numbers, names, or algebraic expressions.' For most argument com­
binations, _ is equivalent to multiplication (*). But when the second argument is a
name or an algebraic, it is converted to a unit object before multiplication by the first
argument. Thus

2 3 IENTERI L~ 6
6 1 - cm L~ 6_cm
12 'X' L~ 12_X
l' 'm-cm' L'"" 99_cm

·49-

3.4 Objects and Execution

In the firlit example, the extra IENTERI (other than that implied by the L~) is necessary
because if _ is preceded by a real number in the command line, it is taken as a delimiter
and must be immediately followed by a unit expression. The last example illustrates the
conversion of an algebraic object into a unit expression: all names in the object are
converted to unit objects of magnitude 1, then the expression is evaluated. The result is
multiplied by the first argument.

3.4.10 Directories
A directory (object type 15) is an object that contains a sequence of global variables-­
name/object pairs. A .full explanation of the nature and properties of directories is
given in section 6.1.2; here we just note that a directory is a data-class object, meaning
that it can be recalled to the stack, copied, and stored. As data-class objects, their exe­
cution action is just to return themselves to the stack. (These are enhancements over
the HP 28, where directories were also objects, but no provision was made for manipu­
lating them as objects.)

The command line and display form of a directory is

01 R name] object] namen ob jectn END

where DIR and END act as start and end delimiters. Each name] object] pair specifies
a variable. The order of thc variables is the same as they appear in the VAR menu.

3.4.11 Libraries
A library object (object type 16) is similar to a directory object, in that it contains a
sequence of named objects (library commands). However, unlike a directory, a library
has a fixed internal structure, so that you can not edit it.

• In a library, the object names are separated from the objects into a table, providing
faster access by name to the objects than in a directory.

• Depending on the origin of a library, it may contain nameless or other special system
objects. There is no provision on the HP 48 for displaying the contents of a library,
other than the LIBRARY menu (section 6.4.3), which displays a library's commands.

• All objects in a library are uniformly accessible--there is no sub-library structure
analogous to subdirectories in a directory.

The named objects or library commands within a library are extensions to the built-in
command set, and can be used in the same manner. A library is an object so that it can
be transferred from calculator to calculator or between calculator and personal com­
puter, moved between the ports (section 6.4), or stored in an inactive form in a variable.

-50-

Objects and Execution 3.4

When a library is displayed as an object, it appears as Library n: title, where n is a
decimal number that identifies the library, and title is a descriptive text string. You can't
see more than a few characters of a library title when the library is on the stack, but you
can use @"}J IEDITI or ~ to view all of the title in the command line (you should cancel
the edit with CID:[] rather than using IENTERI , since you can't actually edit a library).

A library'S commands are executed by means of XLIB name objects, which are
described in section 3.6.3. The methods of attaching libraries to directories so that their
XLIB names are usable is described in section 6.4.3.

[As a matter of fact, built-in commands are also contained in libraries. Moreover, com­
mands that are common to the HP 48S /SX and the HP 48G / GX are permanently
located at fixed memory addresses, and therefore can be represented on the stack and
in composite objects hy address pointers rather than hy XLIB names, which saves
memory and allows faster execution. Commands that are new to the HP48G/C,X are
always represented by XLIB names.)

3.4.12 Backup Objects
A backup object is the object form of a variable (section 6.1), in that it contains a single
object of any type plus a name. As an object it is mobile and can be copied or stored,
unlike a variahle, which is not an object but is a part of a directory. A backup object
also contains a checksum that is used by the HP 48 to verify its memory integrity when it
is transferred between main memory and plug-in memory.

If a backup object is stored in a port (section 6.4.2), the object it contains can be
accessed in a manner similar to an object stored in a global variable. Such backup
objects are addressed by means of global names tagged with a port number. Normally,
a backup object is created directly in port memory, so that you will seldom see backup
objects on the stack--the primary focus is on the object stored within the backup object.
Backup objects on the stack appear as Backup name, where name is the backup object's
name. You can not create or edit a backup object in the command line.

3.5 Procedure Objects

In the preceding review of data class objects, the concept of object execution is straight­
forward but not very interesting. Indeed, there is little point in executing a data object
(with EVAL, for instance) once it is on the stack; the main point of executing such
objects derives from their behavior when executed indirectly during the execution of a
name or a procedure.

-51-

3.5 Objects and Execution

In most calculators, a program is a series of numbered steps that are executed in
numerical order, with occasional breaks in the sequence caused by GOTO instructions
or subroutine calls. Each step in such programs either enters data, or performs a built­
in command. The step numbers indicate the order of execution, but they really have no
meaning other than for visual reference, or in some cases as labels for GOTO. The
HP48 replacements for the conventional calculator programs are procedure class objects.
A procedure is an object defined to be a series of other objects intended for sequential
execution. The procedure class of objects includes program objects, algebraic objects
and code objects (lists can also act as procedures-- see section 3.5.3).

3.5.1 Program Objects
An HP 41l program object (object type 8) is similar to a conventional program in that it
contains a sequence of "steps". The steps are either objects themselves, or combina­
tions of objects called program structures; together, the steps are called the prowam
definition or program contents. Execution of a program object causes execution in turn
of each object in its definition. Program structures such as branches and loops (section
9.2) can alter the order of execution beyond simple linear sequences.

A program object is identified by its start- and end-delimiters« ». Objects entered
between the delimiters make up the program's definition. Note that a program, like any
other object, has no intrinsic name. You name a program by storing it in a named vari­
able.

3.5.2 Algebraic Objects
An algebraic object (object type 9) is also a procedure-class object, but it resembles a
conventional program even less than a program object does, since it is displayed as an
algebraic formula. The delimiters for algebraic objects are the single quotes (usually
called "ticks", for short) , '; the objects that make up the algebraic object's definition
are entered between the quotes.

Algebraic objects have internal structures identical to programs, but they differ in these
respects:

• Programs can contain any HP 48 objects; algebraics can contain only numbers, unit
objects, names, and the subset of HP 48 commands identified as functions .

• The objects in a program may appear in any combination, and may be grouped into
structures (section 9.2). In an algebraic object, the objects are always organized
according to specific rules, called algebraic syntax, that insure that the object looks
and behaves like a mathematical formula.

·52-

Objects and Execution 3.5

• For programs, execution and evaluation are synonymous. The execution action of a
program is to execute the contents of the program sequentially. For algebraic
objects, execution treats the objects as data objects, returning the unchanged object
to the stack. Evaluation of an algebraic object treats the object as a program, and
executes the objects that define the algebraic object.

• Evaluation of a program may take any number of other objects from the stack, and
return any number of arguments, depending on the program definition. Evaluation
of an algebraic object normally takes no arguments from the stack, and returns one
result. (This general rule can be broken if any of the names within the algebraic
object corrcspond to program variables; execution of those names causes execution
of the programs, which may have arbitrary stack effects.)

The ability of algebraic objects to act as data whcn executed, or as programs when
cvaluated, is one of the foundations of the HP 48's ability to perform symbolic
mathematics. When you rearrange a formula using mathematical rules, you are treating
it as data; when you perform substitution of variables' values for their names, you are
cvaluating the formula.

In scction 2.1, wc showed how RPN logic is derived from the desire to convert a
mathematical expression into a series of steps by which you can evaluate the expression
by hand or using a machine. Looking at this from a different point of view, you can
note that since any expression can he translated to RPN, any expression can he
represented in a calculator hy an RPN program. In fact, this is what the HP 48 does--an
algehraic object is stored in calculator memory in an RPN program form just like that
of an actual program object. The HP 48 saves you from having to do the conversion
yourself by providing the algebraic object type.

The only difference between algebraic objects and program objects is that the two are
"marked" differently, so that the HP 48 knows which to display in algebraic form and
which to display in RPN. Also, functions that accept symbolic arguments can only
accept algebraic objects, not programs, since algebraics are by definition valid
mathematical expressions, whereas program objects are completely unrestricted in their
content and may not be suitable arguments for a mathematical function.

To illustrate the program nature of algebraic objects, create this program B:

« DUP 20 » 'B' STO

Next, enter the algebraic object '5+5+B', and presslEvALI. The algebraic object disap­
pears, and the numbers 10 and 30 appear on the stack. You can understand this result
by following the execution of the equivalent RPN sequence 5 5 + B +. When this

-53-

3.5 Objects and Execution

sequence is executed, two 5's are entered, then summed to 10 by the first +. B exe­
cutes next, which duplicates the 10 and enters 20. Then the final + executes, returning
30. You can break down any algebraic object execution into RPN steps this way.
Knowing how algebraic evaluation works is the key to understanding some of the
subtleties of symbolic operations on the HP 48 in general.

Picturing an algebraic object as a program will also help you understand why evaluation
of the object causes variable substitution "one level at a time." Consider the object
'A+B', where A has the value 10, B has the value 'C+D', C has the value 20, and D
has the value 30. Evaluating , A + B' once does one level of substitution, returning
'10+(C+D)', not the numerical result 60. To see why, remember that 'A+B' is
represented by the sequence A B +. Evaluating 'A+B' therefore executes A, B, and +
in sequence: A returns 10, then B returns' C + D', so that + returns '10+ (C + D)'. [Note
that the latter in RPN is 10 C D + +, which is obtained from the original A B + by
substituting the RPN sequence C D + for B.]

These considerations also explain why you might get unexpected objects on the stack
when an error occurs during evaluation of an algebraic object. For example, if you exe­
cute EVAL on an algebraic object and an error occurs, you might expect that the original
object would be returned to the stack. But evaluating an algebraic object is the same as
executing a program, so that an error returns the arguments of whatever function
(within the algebraic) caused the error, along with anything else that was on the stack at
the time of the error. Again, you can predict the contents of the stack from the RPN
sequence that is equivalent to the algebraic object.

For example, suppose you execute 'A+(B+C)' EVAL, where A and B are undefined, but
C has a vector value [1 2]. The HP 4i-l will halt and show the Bad Argument Type
error message, with the stack containing

3: 'A'
2: 'B'
1: [1 2]

This configuration results because the RPN sequence ABC + + errored at the first +.
A, B, and C had already executed, leaving their values on the stack as shown; the +
errored because the combination of a name (' B') and a vector ([1 2]) is not valid for
addition. These arguments of +, not the original argument of EVAL, are returned to
the stack. Note that if you execute EVAL by using the ~ key, you can restore the
original algebraic object by pressing ~IUNDOI (t5J I LAST STACK I).

·54-

Objects and Execution 3.5

3.5.2.1 Expression Structure
One advantage of writing a mathematical expression in Polish notation (section 2.1) is
that it makes explicit the organization of the expression into a hierarchy of subexpres­
sions (section 3.5.2.1). For example, consider the expression a + sin(b-c). Rewriting
this in Polish form, you obtain + (a, sin (- (b,c))). The "outermost" subexpression is
the entire expression, consisting of the function + and its arguments a and sin (- (b,c».
Each of the two arguments is a subexpression--the first is just the name a, the second is
the function sin and its argument - (b,c). The latter in turn is a subexpression consist­
ing of - and its arguments band c, and so on as you peel off the layers of parentheses.
A subexpression or the function that defines it is sometimes referred to by its level,
which is a measure of how deep it is in the hierarchy. In the example, + is the top-level
function; sin (- (b,c» are the next level down, and a, band c are at the bottoms of their
respective branches. You can use OBJ~ to dismantle an expression from the top
down--it returns the top-level function and its arguments if any, and a count of those
arguments:

'f(argJ, arg2, "', argll) OBJ~ argJ arg2 a'Xn n f

Applying OBJ~ to the current example shows that + is the top-level function:

'A+SIN(B-C)' OBJ~ u- 'A' 'SIN(B-C)' 2 +,

There are three reasons for you to keep these ideas of expression structure in mind as
you work with the HP 4S:

1. The structure of an expression determines the order of evaluation of its subexpres­
sions. For example, in the evaluation of 'A + B + C', the A and B are added first,
then the sum is added to C. You can alter this order by changing the expression
to 'A + (B + C) " in which case the Band C are added first. This distinction is
important in a floating-point calculator, even though the two forms are formally
the same. To see this, assign the values 1050 to A, - 1050 to B, and 1 to C. If you
evaluate' A + B + C', you obtain 1, whereas if you evaluate' A + (B + C)', you obtain
O.

2. Understanding the structure of an expression can help you follow the behavior of
HP 48 symbolic manipulation commands. For example, EXPAN is defined to work
at one level of a subexpression at a time. 'A*(B+C+D)' EXPAN returns
, A *(B + C) + A *D' rather than 'A *B + A *C + A *D' as you might expect. This is
more obvious if you think of the original expression as *(A, + (+ (B,C),D)). When
one of the arguments of * is a sum, EXPAN multiplies the other argument by
each of the two arguments of +, then adds the products. The fact that in this case
the first argument of the (first) + is also a sum is not considered--EXPAN only
works one level at a time.

-55-

3.5 Objects and Execution

3. The arrows in the command names tMATCH and IMATCH indicate the direction
of the progression through an expression when these commands (described in Part
If) make substitutions. IMATCH works from the top down, and tMATCH from
the bottom up, and in many cases they give different results when applied to the
same arguments.

We can use these ideas to re-express the basic RPN calculator principle ("any result can
be an argument") in "algebraic" terms by saying "any expression can be a sUbexpression."
A subexpression is self-contained; it mayor may not be embedded in a larger expres­
sion. The shortcoming of algebraic calculators is that they don't recognize this principle.
They are designed for evaluating an expression as a whole--"from the outside in," so to
speak. On the other hand, in a purely RPN calculator like the HP 41, you can only cal­
culate an expression "from the inside out," since you can only enter one numher or
function at a time. The HP 48 merges both approaches, by allowing you to enter any
subexpression in its algehraic form. You can evaluate an entire expression at once, or
you can divide it into sub expressions of any size, or you can work only with one ohject
at a time.

As with most of the principles of HP 48 operation, the concept of algebraic object
evaluation is derived from a mathematical model. In ordinary terms, to "evaluate"
means "to find the value." For a mathemat'ical expression, this translates to "perform
the operations represented by the expression, to find its value." Evaluation means to
"activate" an expression, which in turn means to execute sequentially the objects that
make up the expression.

As an example, consider the simple expression 1 +2. We showed in section 2.1 that an
expression can he translated into an RPN form that represents a prescription for actu­
ally performing the operations of the expression--cvaluating it. Thus the expression 1 + 2
is the sequence 1 2 + in RPN. This is a sequence of objects--rememher (see section
3.2.1) that the +, as well as the 1 and the 2, can be considered as an object. When you
write the expression, the objects are passive; but if you execute each ohject in
succession--"enter the 1, enter the 2, do the +" --you obtain the value of the expression.

3.5.3 Lists as Procedures
As mentioned in section 3.3, lists are composite objects with internal structurcs like pro­
grams and algebraic objects. As such, they can be evaluated as programs. The only
commands on the HP48 that treat lists as procedures are EVAL (section 3.9), 1FT and
IFTE (section 9.4.2). The principal reasons for providing list procedure evaluation in
this manner is to permit the construction of new procedures by programs, and to facili­
tate changing directories by executing path lists (section 5.5.3). This form of list evalua­
tion is not available on the HP 28, where lists are strictly treated as data-class objects.

·56·

Objects and Execution 3.5

3.5.4 Commands and Functions
As illustrated in section 3.2.1, HP 48 commands are objects. Because there is a per­
manent binding between command objects and their command names, command objects
are always entered and displayed using their names only--you never see the actual built­
in SIN program, for instance, only the name SIN. Actually, all commands are program
objects, but to help a program distinguish between commands and user-created pro­
grams, the TYPE and VTYPE commands return type 18 or 19 for commands rather than
type 8 (program). Type 18 indicates that the command is a function; type 19 indicates
an RPN command.

In most calculators, there IS a distinction between user-written programs and built-in
commands:

• Programs are written in the user programming language, and are executed by means
of a command like RUN, XEQ, GOSUB, etc., combined with a program name or
label number. Programs can call other programs (subroutines), but there may be a
restriction on the number of pending returns of which the calculator can keep track
(six in the HP-41, for example) .

• Commands, on the other hand, arc executed or entered into a user program by
name, with no prefix command. In most calculators, executing a command by name
consists of pressing the key that has the command name on it. This either executes
the command, or enters a function code or the name itself into a program. Some
calculators have an alphabetic keyboard that allows you also to specify a command
by spelling out its name.

The fact that HP 48 commands themselves are actually program objects is not readily
apparent. The programs can't be viewed or edited, and they make use of an extended
set of RPL objects that are not available for ordinary user programming. Many of the
latter are code objects written in the calculator's assembly language, the documentation
of is beyond the scope of the owners' manuals (and of this book).

The HP48 philosophy is that the distinction between user programs and built-in com­
mands is artificial and unnecessary, at least as regards their use from the keyboard and
as subroutines. That is, when you write a program and name it, you should be able to
use it exactly as if it were a built-in command. When you enter a program name into
the command line and press IENTERI , or include a program name in another program
definition and execute the latter program, or just press a menu key labeled with the pro­
gram name--the program should execute. The central idea underlying the execution of
HP 48 name objects follows from these ideas (section 3.6).

-57-

3.5 Objects and Execution

3.5.5 Command Execution and Standard Errors
Although each HP 48 command is different, most commands share a common general
structure for checking the number and types of their arguments. Command execution
proceeds as follows:

1. The stack is checked for the number of arguments required by the command. If
there are fewer than the required number, the Too Few Arguments error IS

reported.

2. The required arguments are saved for last argument recovery (section 5.3). This
allows the HP 48 to return those arguments to the stack if there is a subsequent
error or if LASTARG is executed after the command. This applies to commands
that use from one to five arguments. Commands that take a varying number of
arguments (like ~LlST) generally check for erro!' conditions before removing the
the objects from the stack, so that they are not lost if there is an error. Last argu­
ment saving does not occur if flag - 55 is set.

3. The objects on the stack are matched against a list of allowed object type combi­
nations for the command. If there is a match, then the command execution
dispatches to the appropriate action for that argument combination. For example,
when its arguments arc two real numbers, + docs ordinary floating-point addition;
when they are two strings, + concatenates them.

4. If no argument match is found, any tags (section 3.4.8) attached to the arguments
are removed, and the argument match/dispatch is tried again.

5. On the HP48S/SX, if no match is found after tags arc stripped, the command
gives up and issues the Bad Argument Type error. The HP 48(1/GX tries one
more vanatlon: if the arguments are lists, the command is applied to the objects
within the lists. For example:

STO {.5 .3 .12} ~Q Q:? {'1/2' '3/10' '3/25'}.

This feature is called automatic list processing-osee section 3.5.5.1 below.

6. Once it is verified that the required number of arguments are on the stack, and
that they are of a suitable type, command execution proceeds. If the command
succeeds, its results are returned to the stack, usually replacing the arguments.
There are many possible errors, of course--some general, like Insufficient
Memory, and some that are specific to particular commands. One of the most
common is Bad Argument Value, which indicates that even though an argument is
of the correct type, it is not within a valid range of values.

7. If the command fails, in most cases the original arguments are returned to the
stack, and an error message identifying the command and the reason for failure is

-58-

Objects and Execution 3.5

displayed. The arguments are not restored if a) last argument recovery is disabled
(section 5.3); or b) the command caused the execution of other commands (sec­
tion 3.3.1). For example, when EVAL is applied to a program, an error within the
program will be attributed to one of the commands within the program--not to
EVAL. The stack will be left as it was just prior to the execution of the failed pro­
gram command.

3.5.5.1 Automatic List Processing
In the preceding section, we demonstrated the application of ~Q to a list of numbers.
The result is a list of expressions obtained by applying ~Q to each of the numbers in the
original list. This automatic list processing works similarly for most commands, including
those that use multiple arguments:

{10 (1,2) A} {3 4 5} * U" {30 (4,8) 'A*5'}.

* is applied to the first objects in each list (10 and 3), then to the second objects, and
so forth through the final objects. The results of the multiplications are returned all
together in a result list, in the same order as the original arguments in their lists. This
same logic applies to other commands of from one to five arguments:

• There must be as many lists as the ordinary argument count for the command
(except for two-argument commands--see below).

• All of the lists must be the same length (the Invalid Dimension error is reported
otherwise) .

• Each of the argument combinations from within the lists must suitable for the
command--the correct types of objects, in the right order. The arguments are
presented for the command in the same order as the lists from which they are taken:

{A B C} {D E F} A {' AAD' 'BAE' 'CAF'}

The first object in the result list is obtained from executing A D A; the order of the
A and the D is determined by the order of their corresponding lists.

• If any of the repeated executions of the command fails, usually no results are
returned and the original argument lists are restored to the stack. The exception is
for commands that execute other commands (section 3.3.1)--if one of the secondary
commands errors, its arguments are left on the stack. The original lists and the
(partial) list of results are discarded.

Not all commands return stack results: {1 3 5} SF sets flags 1, 3, and 5, but returns
nothing to the stack. If this type of command fails during list processing, any non-stack

·59·

3.5 Objects and Execution

operations that succeeded prior to the error are not reversed. For example,

{1 2 3} {A B 5} STO

causes the Bad Argument Type error, since the last object in the second list is not a
name. However, the first two combinations are valid: 1 is stored in A, and 2 in B,
despite the subsequent error.

For commands of two arguments, only one argument must be a list. When one argu­
ment is not a list, it is used repeatedly in combination with each of the objects in the list
that is the other argument. In this example, a list of numbers is rounded to three
decimal places:

{.12345 .54321 .77782 .09123} 3 RND t~~ {.123 .543 .778 .091}

The order of the list and non-list arguments still determines thc argument order for the
repeated executions of the command, as the following examples show:

{1 2 3} 4

4 {1 2 3}

!L.T {1

U' {4

16 81}

16 64}

In the first case, 1, 2, and 3 are raised to the fourth power; in the second, 4 is raised to
the first, second, and third powers.

Automatic list application is restricted to commands that take one to five arguments of
specific types. This excludes four classes of wmmands:

• Commands that take no arguments, such as MEM.

• Commands that work with any object types, usually stack commands like DUP or
SWAP.

• Commands that work with a variable number of arguments, such as ~LlST or DUPN.

• Commands that are specifically designed to work with lists, such as GET or SORT.

Also, program structure words (section 9.2) that take arguments, such as START, STEP,
and REPEAT, will not process lists.

The set of excluded commands includes +, which adds an object to a list or concaten­
ates two lists (combines their objects into a single list--see section 11.4.1). For the sake
of doing simple arithmetic on lists of arguments, this is unfortunate since -, *, / and
other mathematical functions have no meaning for lists as objects and thus will do

-60-

f

Objects and Execution 3.5

element-wise operations on the contents of lists. To reduce this problem, there is an
alternate addition function ADD (section 11.4.3), which performs element-wise addition
on two lists.

Automatic list processing is not recursive--if a command is applied to lists that them­
selves contain lists, the command is not applied to the contents of the inner lists:

DEG {O 30 90} SIN L~ {O .5 1},

but

{ {O 30 90}} SIN L' Bad Argument Type

~Q and ~Q7T are exceptions to this rule, due to a quirk in their internal designs:

{{.3 .5} {.4 .7}} ~Q L~ {{ '3/10' '1/2'} {'2/5' '7/10'}}.

Automatic list processing can actually be extended to any command, as well as to uscr­
defined functions and programs. This is achieved by the command DOLlST, which is
described in section 11.4.4.1.

3.5.6 Function Execution
HP48 functions have two important execution properties that are not shared by RPN
commands. These are automatic simplification, and a choice of symbolic and numerical
execution modes.

3.5.6.1 Automatic Simplification
When certain functions execute, they check their arguments for special cases in which
ordinary calculation can be replaced by a mathematical simplification. For example, if
you execute the sequence 1 'X' *, you obtain 'X', not '1 *X' . You can observe the
same effect by executing '1 *X' EVAL. This simplification is a property of the * func­
tion; when it is executed, * explicitly looks for cases where one of its arguments is 1. In
such cases, the subexpression consisting of the * and its two arguments is automatically
replaced by the non-1 argument. Other examples are the replacement of SIN(ASIN(X))
by X, and EXP(LN(X + 1)) by X + 1. Again, these simplifications are built into the func­
tions SIN and EXP. Table 3.2 is a complete list of automatic simplifications built into
the HP48. Note that not all cases of a function applied to its own inverse are simpli­
fied. For example, ASIN(SIN(X)) does not automatically simplify to X, since there are
infinitely many angles with the same sine as X. Similarly, since the HP 48 treats complex
numbers uniformly with real numbers, LN(EXP(X)) does not reduce to X.

-61-

3.5 Objects and Execution

Table 3.2. Automatic Simplification

Addition and Subtraction
X-X aO
O+X aX
(O,O)+X aX
O-X a -X
(O,O)-X n..:~ -x
X+O aX
X+(O,O) o-X
X+ -p OJ X-p
X-O o-X
X-(O,O) o-X
X- -p OJ X+p

Multiplication and Division

INV(i) a1 -i
Y*INV(X) OJ Y/X
Y/INV(X) a1 Y*X
O*X U' 0

(O,O)*X It]' (0,0)
i*i (t] -1

1*X U' X
(1,O)*X a..:r X
(-1)*X L" -X
(-1,0)*X u- -X

X*O U' 0
X*(O,O) u; (0,0)
X*1 U' X

X*(1,O) o-X
X*(-1) ax -X
X*(-1,O) U' -X

X/1 u-X
X/(1,O) u-X
X/(-1) U' -X
X/(-1,O) Ll" -X

O/X 010
(O,O)/X ax (0,0)

X, Yare any subexpressions.
p is any positive real number.

Powers
1"X a 1
(1,O)AX a (1,0)
SQ(v'(X)) a X
SQ(Y"X) a YA(2*X)
SQ(i) a -1
XAQ a 1
XA(O,O) OJ (1,0)
XA1 a1 X
XA(1,0) OJ X
XA(-1) OJ I NV(X)
XA(-1,0) 0- I NV(X)
(v'X)A2 U' X
(v'X) A(2,0) 0- X
i~ [l-j" -1
iA(2,O) rr.:.r (-1,0)

Pans
ABS(ABS(X)) Ll" ABS(X)
ABS(-X) 0- ABS(X)
CONJ(CONJ(X)) IT_¥" X
CONJ(IM(X)) ax IM(X)
CONJ(RE(X)) U' RE(X)
CONJ(i) U' -i
IM(CONJ(X)) [1 -IM(X)
IM(IM(X)) ax 0
IM(RE(X)) [L~ 0
IM(7T) lL.$'" 0
IM(i) aj' 1
MAX(X,X) U' X
MIN (X,X) U' X
MOD(O,X) OJ ° MOD(X,X) Ll" 0
MOD(X,O) n...::~ X
X MODY MODY a1 XMODY
RE(CONJ(X)) U' RE(X)
RE(IM(X)) Ll" IM(X)
RE(RE(X)) Ll" RE(X)
RE(7T) uTI
RE(i) a ° SIGN(SIGN(X)) OJ SIGN(X)

Automatic simplification is not the same as the simplification that results when a numer­
ical expression is evaluated by COLCT. For example, although '2/2' automatically sim­
plifies to 1 when you evaluate it, '2*X/2' does not automatically simplify to X. In order
for the simplification to take place, the two 2's must be the arguments of the I, as in

·62-

Objects and Execution 3.5

'(2/2)*X'. To simplify '2*X/2', you can either use RULES to rearrange it to '(2/2)*X',
or use COLCT.

3.5.6.2 Symbolic and Numerical Execution; ~NUM
The key to the HP 48's ability to perform symbolic calculations is the fact that HP 48
functions used with symbolic arguments (names or algebraics) return symbolic results.
Each time you evaluate an algebraic object, the names in the expression or equation are
executed, so that those corresponding to existing variables are replaced by the objects
stored in the variables. But the replacement objects are not evaluated, so that the final
result may still be symbolic. If you want to evaluate a symbolic object all the way to a
numerical value, you may have to use EVAL repeatedly until all of the names have been
replaced by numbers.

In some circumstances, it is desirable to evaluate a symbolic object to its final numerical
value in a single operation. For example, in the course of their execution, DRAW and
HP Solve both evaluate the current equation to numerical values. To deal with such
cases, as well as the symbolic evaluation described already, the HP 48 provides you with
the choice of symbolic c.x:eclltion mode or numerical execution mode. In symbolic execu­
tion mode, a function evaluated with symbolic arguments returns a symbolic result. In
numerical execution mode, a function of symbolic arguments evaluates its arguments,
repeatedly if necessary, until they are data objects (usually numbers). Then the function
returns a numerical result. If any name is encountered during the evaluations that has
no corresponding variable, the Undefined Name error is returned.

You can select numerical execution mode temporarily, for a single evaluation of a sym­
bolic object, or for an indefinite period:

• To evaluate numerically a single object containing functions, use ~NUM instead of
EVAL. ~NUM enables numerical execution mode, evaluates its argument in the
same manner as EVAL, then restores the original execution mode .

• To select numerical execution mode "permanently," set flag - 3. The menu key
~SYM~ (E5J IMODESI ~MISC~) is handy for this purpose; pressing that key toggles
between symbolic and numerical execution modes. If the key label shows a white
box (~ SYMD~), then flag - 3 is clear and symbolic execution is active; the absence of
the white box indicates that numerical execution is in effect. You can also set and
clear the flag with SF and CF. While flag - 3 is set, the execution of any function
returns a numerical result, or an error message if numerical execution fails. In this
mode, EVAL and ~NUM produce the same results. To restore symbolic execution
mode, press ~ SYMD~ or clear flag - 3. Symbolic execution mode is the default mode
following a memory reset (section 6.6).

-63-

3.5 Objects and Execution

To illustrate these ideas, execute

30 'X' STO 'X'

to create a variable X with the value 30, and leave its name on the stack. Next select
degrees mode by executing DEG if necessary. Now,

1. In symbolic execution mode, compute the sine:

[IDN] c] , SIN(X)'.

At this point, you still have a symbolic result. Find the numerical value:

IEVAL! L." .5.

When 'SIN(X)' is evaluated, X is replaced by its value 30; then, since SIN has a
numerical argument, a numerical result is returned.

2. Now try the calculation in numerical mode:

, X' [IDN] OJ .5

This time, you immediately obtain the numerical result .5. This is hecause in
numerical execution mode, SIN evaluates the symbolic argument 'X' to its value
30, then returns the numerical sin 300.

3.5.7 Symbolic Constants
A frequently asked question about HP calculators is "why does the sequence TI SIN (in
radians mode) !lot return 0, when everybody knows that sin TI = O?" On the HP-41, for
example, TI SIN returns -4.1E-10. The answer is that the TI key does not return
mathematical TI, but an approximation accurate to the numerical precision of the calcu­
lator, which is the 10 digit number 3.141592654 on the HP-41. When SIN uses this
approximation as an argument, it treats it like any other floating-point number and com­
putes its sine, again accurate to the calculator's precision. To understand the approxi­
mate value, consider that for small x, sine TI + x) = -x. In this case, x is the difference
between TI and the calculator approximation: TI +x = 3.141592654. Thus

x = 3.141592654- 3.14159265359+ ::::: 4.1 x 10- 10
,

and

sin(TI +x) = -4.1x 10- 10
,

which is just what the HP-41 returns. SIN is evidently returning an accurate result for
its argument, but the argument is not TI.

Could a calculator be designed to recognize the approximation as its best numerical

-64-

1
~ ,
j

j
I, ,
I
I

Objects and Execution 3.5

representation of TI and return zero for the sine of that number? Certainly it could, but
HP calculators generally don't do this sort of thing, following the guideline that the limi­
tations of fIxed-precision calculations make it unwise to try to guess when a numerical
value is supposed to be some special number. This sort of problem shows up in lots of
cases: for example, should 1/.142857142857 evaluate to 7.00000000001, which is the
most accurate 12-digit reciprocal of that argument, or 7.00000000000, on the chance
that .142857142857 was obtained originally by computing the reciprocal of 77 This
problem is a fundamental limitation of trying to represent arbitrary numbers with a fIn­
ite number of digits.

The HP 28 and HP 48 provide a different approach than other calculators to the prob­
lem of representing TI. Assuming for the moment that flags - 2 and - 3 are clear, exe­
cuting TI returns the expression' TI' (note that this is an algebraic object, not a name-­
e.g. TYPE returns 9). If you execute TI 2 *, you obtain '2 *TI'. As long as you don't
force numerical execution by executing -NUM, TI retains its symbolic form through any
number of operations. This has two immediate benefIts:

• An expression containing the symbol TI gives you more information ahout the nature
and derivation of the expression. Once you convert it to a numerical form, no
matter how accurate, the presence of TI in the expression becomes ohscured. The
expression' TI /4' is more informative than the number 0.785398163398.

• Using symholic TI prevents errors arising from a finite precision numerical represen­
tation of TI from accumulating in chained calculations. By delaying the substitution
of a numerical value for TI until a calculation is complete, you ohtain maximum
accuracy.

A symbolic TI also permits a new resolution of the sin TI issue. On the HP 48, if you
execute' TI SIN (with flags - 2 and - 3 clear, and radians mode active), you obtain O.
This is an automatic simplification (section 3.5.6.1), not a numerical computation--when
SIN is executed, it checks its argument to see if it is symbolic TI. If so, the subexpres­
sion SIN(TI) is replaced by O. The following additional simplifIcations are also made, in
the same spirit:

• SIN(TI /2) is replaced by 1 (note: SIN(1.5707963268) also returns 1);

• COS(TI) is replaced by -1 (COS(3.14159265359) also returns -1);

• COS(TI /2) is replaced by O.

• TAN(TI) is replaced by O.

Only these four specifIc subexpressions are simplified. SIN(2 *TI), for example, IS not
simplifIed, and returns 4.13523074713E-13 when evaluated numerically.

-65-

3.5 Objects and Execution

3.5.7.1 Other Symbolic Constants
In addition to 1T, the HP 48 provides four other symbolic constants: e (numerical value
2.71828182846), i (value (0,1)), MAXR (value 9. 9999999999E499) , and MINR (value
1 E - 499). There are no special simplifications associated with e, MINR or MAXR, but
the symbolic forms allow you to track the associated constants through calculations. i
has these simplifications:

Subexpression Replacement

SQ(i) -1
i*i -1

i"'2 -1

i"'(2,0) -1
RE(i) 0
IM(i)

CONJ(i) -i

You can use i to enter complex numbers in the form a + bi rather than the standard
object format (a,b). For example, 1+2i can be entered as '1 +2*i'. You can perform
arithmetic with such expressions, using EXPAN and COLCT where appropriate to sim­
plify a multi-term expression into the form a + bi.

3.5.7.2 Evaluation of Symbolic Constants
Symbolic and numerical execution modes affect the way all built-in HP 48 functions
evaluate symbolic arguments. The five symbolic constants 1T, e, i, MAXR and MINR
behave as functions of zero arguments--and as functions they are sensitive to the execu­
tion mode. When flag - 3 is clear, execution of any of these constants returns a sym­
bolic result, which is just the constant itself unchanged. When flag - 3 is set, execution
of a symbolic constant replaces it with its numerical value.

It is possible by means of flag - 2 to select a restricted form of numerical execution
mode that affects only these constants. When symbolic execution mode is active (flag
- 3 clear), setting flag - 2 causes symbolic constants to evaluate numerically, without
affecting the execution of other functions. This permits, for example, replacement of
symbolic constants with numerical values in expressions that contain formal variables
(undefined names). To see this, enter 'X' PURGE, then enter the expression' 2 *1T *X'
into level 1. Then,

-2 CF -3 CF EVAL G '2*1T*X'

and

-66-

l
ri

I

Objects and Execution 3.5

~NUM L~ Undefined Name error.

But if you set flag - 2:

'2 *'IT*X' -2 SF EVAL n '6.28318530718*X'.

'IT evaluates to its numerical value, while with flag - 3 clear * still returns a symbolic
product.

3.6 Name Objects
The center of the action in the HP 48 is the stack, where objects can be manipulated
and executed. However, it is impractical to keep all objects on the stack; in particular
built-in objects and those in libraries are most convenient if they can be executed
without ever putting them on the stack. To this end, the HP 48 provides several types of
name objects, that let you access objects indirectly. Executing a name object either
recalls or executes another object so that in many cases you can perform operations on
objects entirely by means of their associated name objects.

Since objects are intrinsically nameless, to name an object requires storing it in memory
in such a way as to preserve the association between an object and a name. In the
HP 48, to name an object means to store it; a named object is a stored object, and vice­
versa. Stored/named objects appear in several forms:

• Built-in objects--operations--are permanently stored in the HP 48's read-only
memory. A subset of operations called commands have names, and thus may be
included in procedures or entered on the stack by means of their names. It is gen­
erally not necessary to distinguish between command objects and their command
names, since they are not separable, and only the names are ever "visible."

• Library objects (section 3.4.11) contain extensions to the built-in command set in the
form of stored objects that are accessed using XLIB name objects.

• Global variables (section 6.1) are the most visible form of storage of user-created
objects, corresponding to numbered or lettered registers on other calculators. Global
name objects (object type 6) are used to access the contents of global variables.
These variables exist in the so-called user memory, also called VAR memory because
of its association with the IVARI key. The structure of user memory is explained in
section 6.1.2.

• Local variables are created by programs for their own use, and only exist while the
associated programs are running. Their contents are accessed by means of local
name objects. See section 9.7.

-67-

l

3.6 Objects and Execution

• Port variables (section 6.4.2) are like global variables in port memory. Access to
their contents is provided by means of path-names, which are specially tagged global
names or lists.

The names associated with these five types of stored objects aren't associated with any
special delimiter symbols. In the command line, any sequence of characters that doesn't
start with a delimiter and is not a number is a candidate to be a name--the process of
distinguishing the various types of names is described in section 6.5. Global and local
names may be enclosed in " delimiters (and are displayed that way as stack objeets),
but the delimiters are used to prevent immediate execution (section 3.7) rather than to
identify the object type.

You ean view name objects as the HP48 version of the storage register numbers or
letters used on ordinary calculators, but this simple picture doesn't really do justice to
their power. Register numbers are purely passive labels, of the most primitive sort--they
don't tell you anything about what is stored in the register. Names, on the other hand,
label their variable contents with text that can help you remember what eaeh variahle
does, and which make programs more legible. Furthermore, HP 48 names are active
instead of passive: when you exeeute them, they eause automatic recall or execution of
another object.

3.6.1 Global Names
(;Iohal variables are intended for storing data for general access, and for contaJl1Jl1g
named programs that act to extend the HP 48 command set. With this in mind, glohal
name ohjects are designed to work like commands:

Execution of a global name causes execution of the object stored in the
global variable with that name.

The net result of the execution of a glohal name follows directly from the execution
action of the object stored in the corresponding variable--data ohjects and algebraics
return to the stack, programs (or commands) run, and name objects execute or recall
their stored objects in turn. There is one extension to this general rule: if the stored
object is a directory, execution of the associated name object does not leave the directory
on the stack hut instead makes the directory the current directory (section 6.1.2).

The properties of glohal name execution listed here explain why IRCLi is relegated to a
shifted key position on the HP 48 keyboard. Used with the names of variahles containing
all object types except programs and names, EVAL (which is on an unshifted key) and
RCL are equivalent. The primary purpose of RCL, therefore, is to recall a stored pro­
gram or name to the stack without evaluating it, a relatively infrequent need.

-68·

Objects and Execution 3.6

Un quoted global names act just like built-in commands, so that you can define your own
command set by storing programs in global variables. You can execute a global name
by:

• Typing the name into the command line and pressing IENTERI ; or

• Pressing the VAR or CST menu key labeled with that name; or

• Including the name in a procedure (a program or an algebraic), and evaluating the
procedure.

These three methods arc identical for global name objects and HP 48 commands.

[As it happens, HP 48 commands are also programs written in a language that is a
superset of the HP 48 user RPL, so there really is no structural difference between user
programs and commands. A practical difference is that built-in commands are fixed in
read-only memory, and can be encoded in programs by their memory addresses or as
XLIB names and thus executed more quickly than objects stored in global variables.
The latter arc referenced by name, and must be searched for in user memory whenever
their names are executed.)

The fact that executing the name of a stored algebraic object returns the object to the
stack without evaluation makes possible "step-wise" algebraic substitution. For example,
consider evaluating 'A+B', where A has the value 'C+D', B is 5, C is 10, and 0 is 20.
The HP 48 will return 'C + 0 + 5' at the first usc of EVAL, and 35 at the next. If an
algebraic stored in a variable was automatically evaluated when the variable's name was
executed, you would lose the intermediate step and obtain only the final result 35 at the
first EVAL.

In the case where a global name is executed for which no variable currently exists, the
action is simple--the name itself is just returned to the stack as if it were a data object.
This behavior is necessary for symbolic operations; it means the HP 48 can deal with
symbols (names) even when no value has yet been established. Thus 'A+B', where A is
undefined and B is 10, evaluates to 'A + 10'. Execution of the A returns' A', B returns
10, and + combines the symbolic 'A' and the number 10 into a new symbolic 'A+10'.
We call A a Jonnal variable, meaning you can work formally with the name in calcula­
tions just as if there were an existing variable named A.

If a variable contains a global name, the stored name is executed when the variable's
name is executed. Thus if the number 8 is stored in the variable A, and 'A' is stored in
B, evaluating B returns 8. This property of names leads to the possibility of "endless
loops" --if' A' is stored in B, and' B' is stored in A, evaluating either A or B will start an
unending circle of executions, so that the HP 48 will be busy indefinitely without any

·69·

3.6 Objects and Execution

apparent sign except that the hourglass annunciator stays on. You can just press I ON I to
stop execution.

3.6.2 Local Names
Local variables are intended primarily for temporarily storing and naming stack objects,
in order to simplify argument manipulations in programs. This use dictates that the
objects stored in local variables should be unchanged (i.e. not executed) when they are
recalled to the stack. Hence local name exeeution is intentionally simpler than that of
global names:

Execution of a local name recalls the object stored in the corresponding
local variable, without executing the object.

The creation and use of local variables is described in section 9.7.

On the HP 48G /GX, any name that starts with the left-arrow character "~" is automati­
cally entered as a local name, regardless of whether there is currently a corresponding
local variable. This character was chosen because of its association with the right-arrow
"~,, that is used to start local variable structures ("~" itself could not be used, because it
is already used in several HP 48 command names.

3.6.3 XLIB Names
XLIB names provide access to objects stored within library objects. The abbreviation
"XLIB" is short for "eXternal LIBrary", the "external" referring to a library that is not
built into the HP 48's permanent memory. In most respects, you use XLIB names in the
same manner as commands--executing an XLIB name executes the associated object in
the library. As long as its library is available (i.e. present in the current name resolution
path-osee section 6.5), an XLIB name is entered and displayed as (unquoted) text, again
like a command. However, when its library is absent, a previously entered XLIB name
is displayed in the form

XLiS library-number, object-number,

where library-number is the library identification number of the library, and object­
number is the number of the specified object within the library. Executing an XLIB
name when its library is absent returns the Undefined XLiS Name error.

3.7 Quoted Names
We have shown that global and local names automatically replace themselves with their
associated variable values when executed. But there are many cases where you need the
name object itself on the stack, so that you can use it as an argument for a command

-70-

Objects and Execution. 3.7

like STO or GET. You can accomplish this by enclosing the name within single quote
delimiters, e.g. 'name'. The quotes around a name instruct the HP 48 to return the
literal name itself, and not to execute it.

To store the value 10 into a variable X, the correct sequence is 10 'X' STO. If you omit
the quotes, as in 10 X STO, you may very well get an error, since the value of X is
returned before the STO executes, rather than the name X. You can use 10 X STO if
the variable X does not yet exist, since that case executing X just returns to the stack the
name 'X', which is a suitable argument for STO. In general, to avoid uncertainty you
should keep the habit of entering the quotes around the name when you want to store.
However, if you're primarily performing symbolic calculations, you may want to take the
trouble to purge all of the variables you want to work with, just so you can put the
names on the stack without bothering with the quotes.

3.8 Quotes in General
There are three sets of quotation marks that are used as HP 48 delimiters:

• Single quotes' " (called "ticks," for short) which identify algebraic objects, and also
create name objects on the stack;

• Double quotes" ", which create strings; and

• Program quotes« » (guillemcts) , which create programs.

All three types of quotation marks have a common theme in the HP 48. They mean
"put this object on the stack--don't execute it yet." Preventing execution of a string
object is not particularly meaningful, since strings are data objects, but we include the
double quotes " " in this discussion for completeness. The double quotes primarily dis­
tinguish text strings from names.

We stated in section 3.7 that placing single quotes around a global or local name enters
the name as an object on the stack. The quotes play the same role for algebraic
objects--the same symbol is used for the two different object types (name and algebraic)
because it makes sense in many contexts to treat a name object as an algebraic expres­
sion consisting of just one variable name. As we mentioned in section 3.3, an algebraic
object is a composite object and thus can be evaluated like a program--it happens to be
displayed in algebraic form rather than RPN. Again, the quotes mean "don't execute
this program, just put it on the stack." The HP 48 doesn't allow you to specify an
immediate-execute algebraic object (i.e., without quotes)--if you want the expression to
be executed immediately, you have to enter it in RPN form.

Although the same delimiters are used for algebraics and names, and for many cases

-71-

3.8 Objects and Execution

you can treat them the same, they are still different object types. The distinction is
maintained for the sake of commands like PUT and RCL, which would make no sense
with an expression or an equation as an argument. The HP 48 insures a smooth interac­
tion between names and algebraics by treating them uniformly (as a general symbolic
object type) as arguments for functions, and by automatically converting algebraics con­
taining only a variable name into name objects. Thus TYPE returns type 9 for the
expression 'A + 0', but if you evaluate the expression (assuming A has no value) to elim­
inate the 0, TYPE then returns 6, indicating that the object is a global name.

Understanding the meaning of quoted and unquoted programs starts with the recogni­
tion that the contents of the command line constitute a program--an arbitrary series of
objects intended for sequential execution. When you're carrying out keyboard calcula­
tions, the execution is immediate as soon as you execute ENTER (section 4.3.3). The
command line program is created, then executed right away. However, you can post­
pone execution of the command line by inserting a« delimiter at the start. ENTER
then creates a program object containing the command line objects.

Because the command line is a program, and programs are deferred-execution com­
mand lines, it follows that whatever you can do in the command line, you can also do in
a program (and vice-versa). Thus programs can contain quoted objects: names, algebra­
ics, and even other programs. For example, here is a program named TEST that creates
a glohal variahle containing yet another program:

« '" « 10 *» 'X10' STO ... » 'TEST' STO

Executing TEST executes its stored program, which in turn creates a variahle X10 con­
taining the program« 1 0 * ». Because of the surrounding « », the sequence
1 0 * is not executed, but is put on the stack as a program, where it and the (quoted)
name X1 0 are the arguments for STO.

Adding a tag (section 3.4.8) is another method of entering an object without execution.
This point is particularly relevant for port names (section 6.4.2), since you can not add
single quotes to a port name--but you don't have to because the tag prevents its execu­
tion anyway.

3.9 EVAL
As discussed in the preceding section, the various types of quote delimiters cause objects
to be placed on the stack without being evaluated. The EVAL command is provided so
that you can later evaluate these "pending" objects, particularly programs, names, and
algebraics. Applying EVAL to a data ohject does in fact evaluate the object, but that just
returns the same object.

-72-

Objects and Execution 3.9

Perhaps the most common use of EVAL arises in symbolic calculation, where you have
entered an algebraic object and want to substitute values for the variable names that
appear in the object's definition. The IEVAU key also provides a handy way of making a
keyboard calculation in algebraic syntax. Just press 0 to start algebraic entry, enter an
expression, then press lEV AU , which here acts like an algebraic calculator's 0 . For
example,

3.10 System Objects
In addition to the object types described in the preceding sections, the RPL system uses
several additional object types. Although these objects do not appear in normal use of
the HP 48, you may see them in these circumstances:

• A defect in a system program may leave one or more such ohjects on the stack .

• Future lihraries may provide for intentional user-manipulation of the system object
types.

Tahle 3.3 on the next page summarizes the system ohject types.

Most built-in assemhly language ohjects are also displayed as External when they are on
the stack, he cause their structure does not conform to any of the object types listed in
the table. You should not normally see such objects; if you do, it is due to a defect in
the HP4S's built-in programming. We recommend that you immediately perform a sys­
tem halt (I ON I -~) to remove the object and reset the system to a safe condition.
Do not try to evaluate the object.

3.10.1 SYSEVAL
Built-in HP 48 program objects--commands--are permanently stored in the calculator.
These objects are always in the same place in memory; any such object could in princi­
ple be executed by specifying its memory address rather than its name. In fact, this
execution-by-address is the most common form of execution within HP 48 system pro­
grams. Furthermore, the HP 48 contains many hundreds of objects that are not named,
and which are consequently not directly executable from the keyboard. The majority of
these objects are not useful for common HP 48 operations--those that are most useful
have names to make them commands. However, some unnamed objects do have practi­
cal uses.

The SYSEVAL command provides for execution of any system object by means of its
address. That is, you enter the object address as a binary integer object, then execute

-73-

3.10

Table 3.3. System Objects

Object Type TYPE Stack Display Class
Number

System binary 20 <nnnnn> Data

Extended Real 21 Ext. Real Data

Extended Complex 22 Ext. Complex Data

Linked Array 23 Linked Array Data

Character 24 Character Data

Code Object 25 Code Procedure

Lihrary Data Object 26 Library Data Data

External Object 27-31 External Data

Objects and Execution

Definition

20-bit unsigned integer

Extended precision (15-digit
mantissa, 5-digit exponent)
real number

Extended precision complex
number

Like ordinary array, but all
clements do not have to be
present.

One text character.

A program written in assem-
bly language.

Data-class object used hy
lihraries to save data specific
to each lihrary.

Data-class objects not specifi­
cally defined in the HP 48
(may be used by external
software).

SYSEVAL, which in turn executes the specified system object. From time to time, III

response to customers' requests, Hewlett-Packard has published the addresses of a few
system objects that help solve certain common programming problems.

For example, if a program creates a temporary display by means of DISP or other com­
mands, that display will persist until the end of the program. You can cause the calcula­
tor to restore the normal stack display while a program is running by executing
#39BADh SYSEVAL.

Another example is given by the following program, which is intended for use in pro­
grams that are designed to work in either an HP48S/SX or a HP48G/GX. HP48G?
returns fmc (1) if it is running in an HP48G/GX (code versions K or later), and false
(0) if it is running in an HP48S/SX (version A-J).

-74-

Objects and Execution 3.10

HP48G? Running on a HP48G/GX? C865

I level 1

IT flag

« #30794h SYSEVAL Get the version string.

8 8 SUB Version letter.

NUM 74 > Greater than J?
»

You must use extreme care when using SYSEVAL, for execution with an incorrect
address may cause a system halt or a memory reset (section 6.6). When you execute
SYSEVAL from the command line, or enter it in a program, you should do the follow­
ing:

• Be sure that the address you are using is correct.

• Be sure you enter the address correctly. This means not only getting all digits right,
but also making sure that the number is correct for the current binary integer base.
All of the SYSEVAL addresses listed in this book are given in hexadecimal, so you
should execute HEX before entering the binary integer address. (Remember that
including HEX in the command line does !lot affect the interpretation of binary
integers entered in that same command line).

• Do not attempt to single-step (section 12.2.2) programs containing SYSEVAL. If you
need to do this, replace the sequences #address SYSEVAL with global names, where
each name corresponds to a variable containing a program

«#address SYSEVAL».

Most useful SYSEVAL addresses are the same on the HP48S/SX and the HP48G/GX,
and can be used on any HP 48. However, some do differ on the Sand G models, and
even some that are unchanged may refer to system programs that do not work identi­
cally. In general, you should use care when using SYSEVAL, and it is best to make a
backup copy (section 6.5.4) of caleulator memory when trying new SYSEVAL programs
for the first time.

3.10.2 LlBEVAL
The HP 48G /GX uses a sophisticated memory management scheme to enable the use of
more memory than its CPU can address directly. One consequence is that a large
number of system objects are not accessible by memory address and hence are not
available for SYSEVAL. These objects are stored in libraries but have null names so

-75-

3.10 Objects and Execution

that they won't conflict with ordinary command and name entry. Accordingly, the
HP48G/GX includes the command LlBEVAL, which allows you to execute any object
contained in a system library by its XLIB numbers. LlBEVAL takes a binary integer
#nnnmmm as its argument, and executes the mmmth object in library nnn, where nnn
and mmm are each three-digit (hexadecimal) numbers. LlBEVAL actually works with
any library, built-in or add-in. For example,

#AB06Bh LlBEVAL

executes DOLlST, which happens to be object 6B in library AB.

You can also use LlBEVAL for writing programs that use add-in library commands,
when the library is not installed in the HP 48 (section 6.4.3). Of course, the library has
to be installed in order to execute such programs.

-76-

1
I

4. Object Creation

Because of the wide variety of objects that the HP 48 can manipulate, the calculator
must provide a very sophisticated and flexible mechanism for you to create and modify
those objects. In this chapter we will discuss the general keyboard interface and the
object editors, and the nature of the all-important ENTER. Of course, you have learned
at least the rudiments of these topics from the owner's manuals, but there is such a
wealth of detail that it is worthwhile to review and expand on that introduction.

4.1 The Basic Interface
The HP 48 is fundamentally a key-per-function calculator, which means that its basic
interface provides a platform for calculations on mathematical and logical objects, where
each calculation in principle can be performed by means of a single keystroke. The use
of an RPN stack (Chapter 2) as the focus of the interface combines facilities for the
input of arguments and the output of results into a single mechanism, allowing for the
endless chaining of arbitrarily complicated computations. Objects arc placed on the
stack, commands are applied to the objects, and new objects that represent the results
of the commands are returned to the stack.

Key-per-function means that any command can be executed by means of a single key­
stroke. This facility is important not only because of the mechanics of typing, hut
because there is a certain psychological satisfaction to making something happen with a
singlc well-chosen keystroke. You think of a function like sine as one operation; the
key-per-function approach makes a nice one-to-one correspondence between the
abstract sine and the tangible keystroke. It is not an exaggeration to say that the pri­
mary goal of the HP 48's programming language, customization features, and plug-in
memory ports is to allow you to extend the key-per-function interface to calculations
that are not included in the built-in command set.

A central property of an RPN calculator is that the objects upon which you are operat­
ing are literally visible, as well as accessible computationally, in close proximity to the
operations (i.e. the keys) that you are to apply to them. This is a succinct description of
the HP 48 physical layout. In the basic HP 48 state, the display shows one or more
objects on the RPN stack, within the same field of view as the keys that represent the
current choice of operations. A typical display looks like this:

·77-

4.1 Object Creation

RAD ~
{ HOME TEST} (15/3(1/93 (lB:15:(l9P

4: 3.14159265359
3: ITII

I~ IXA21(~~5~~
1miCma::JliBlma::lrimElmEC

The display rows numbered 1: through 4: show the first four objects on the RPN stack.
Immediately below are menu key labels that identify the operations associated with the
unlabeled keys below the labels. At the top of the display is the status area, that nor­
mally shows information about the status of the calculator, including the states of vari­
ous modes (section 7.1), the current directory path (section 6.1.2), and optionally, the
time and date. When you enter a new object, part or all of the stack display area is
given over to a command line (section 4.3); when entry is complete, the display reverts
to the stack.

The HP 48 has a number of other display/keyboard states that are used in the course of
computations, but the state described above is basic in that it is the "rest" state that is
restored when all active and pending operations are complete, or when a system halt
(section 6.6) resets the calculator. We shall refer to this state as the standard environ­
ment, which includes the standard display (status area, stack, menu labels) and standard
keyboard (which may be redefined by user key assignments--see section 7.2). Another
state of almost equal stature is the plot environment, in which the key-per-function inter­
face is applied to graphical data instead of discrete objects. The graphical data is con­
tinuously presented to you, and the menus and keys are devoted to operations on that
data, with the results immediately visible.

Because of the parallel importance of the standard environment and the plot environ­
ment, the display memory associated with each is maintained independently, so that you
can switch back and forth between the two without losing data. We shall call the two
display memories the text screen and the picture screen, from their respective activating
commands, TEXT and PICTURE. This terminology helps focus on the logical purposes
of the displays, and distinguishes them from the physical LCD and memory. We shall
discuss more about these "screens" in Chapter 10.

While the plot environment is largely self-contained, the standard environment is almost
indefinitely extensible. The menus and menu keys, for example, extend the basic key­
per-function interface to the hundreds of built-in operations for which there are not

-78-

Object Creation 4.1

enough keys for unique keyboard assignments. When you create programs, you are
effectively adding to the built-in language (section 3.6) and providing more operations
that can be applied in the same simple manner. Some programs may become compli­
cated enough that they supplant the basic interface by redefining the keyboard and
presenting special displays, in order to provide improved ease-of-use and functionality
tailored to specific applications. The HP 48 itself contains several such programs, such
as the EquationWriter, the MatrixWriter, and the various input forms. The remainder
of this book is essentially a description of the principles of the basic interface, and how
you can develop your own extensions to that interface that span the entire spectrum
from simple key-per-function operations to systems that rival the built-in environments.

4.2 Keyboard Mastery
The HP48 keyboard may seem to be a complicated maze of nomenclature and colors,
but there is some method in the madness. Understanding the organization of the key­
board, including the extended keyboard available through the menus, will help you
remember what various keys mean, and where to find various operations.

Most personal computer keyboards are competely generic in the sense that they are not
optimized for any particular software-driven application, but offer a typewriter-like
"QWERTY" keyboard designed for text entry. Customization for a particular applica­
tion is provided by function keys that can he labeled by keyboard overlays, or by the use
of a mouse or other pointing device that makes the display into an extended keyboard.
But the HP 48 is not designed to be quite so generic; rather, its keyboard is laid out with
certain definite purposes in mind. The assignment of operations to the various keys
reflects the priority order of these purposes:

1. RPN calculator. All of the sophisticated features of the HP 48 are subordinated to
the requirement that the calculator must provide for convenient execution of ordi­
nary arithmetic. Thus the number pad and the arithmetic operators are primary
(i.e. unshifted), extra-wide keys. ENTER, of course, is given extra prominence due
to its central role; the three most common stack operations, DUP (IENTERI),

SWAP (U8), and DROP ([£J) are available as primary keys.

2. Scientific calculator. The most commonly-used mathematical functions are gath­
ered on the primary and shifted keys of the fourth row.

3. Object entry. The delimiters and other symbols associated with object entry are
grouped on the shifted El , W , Q , and [±] keys. The cursor keys are pri­
mary, and the EquationWriter and MatrixWriter, which are essentially specialized
object editors, are available on shifted IENTERI .

4. Problem-solving resources. These are what the owner's manuals call applications:
HP Solve, automated plotting, algebra, time management, statistics, and unit

-79-

4.2 Object Creation

management (covered in HP48 Insights Part If). They are activated by the shifted
[ZJ , [j] , []] ,W , W , and W keys. The right-shifted menu key in each case has
an input form that provides an environment for using the resources in an interac­
tive manner. The right-shifted I/O, MODES, and MEMORY keys also have spe­
cial input forms, although these are more likely to be used for single operations
rather than extended interactive sessions. ~ IEQ LlBI is effectively an extension of
~ ISOLVEI. The left-shifted keys in all of these cases activates a menu of com­
mands that provide for program use of the resources.

5. Customization. The top two rows of keys are associated with customization: the
menu keys (top rows), which provide access to the hundreds of operations for
which there are not permanent key assignments, plus the INXTI key, for navigating
within the menus; IVARI and ICSTI which provide instant access to the additional
operations that you define; and IMTHI and IPRGI. The latter two keys are effectively
shift keys, for which the second part of each two-key combination is selected from
the menu keys as labeled in the display.

6. Text entry. Of course, the entry of text is important for almost all of the purposes
outlined above, so it may not deserve to be last in the priority list. However, we
list it last to highlight the fact that the HP 4R is optimized for calculator-style key­
per-function operation rather than for computer-style operation via text typing. If
this were not the case, the HP 4S would also have primary alpha keys in a
QWERTY layout.

4.2.1 Keystroke Strategies
Almost cvery operation that the HP 4S can perform is available ultimately as a single
key press, if you don't count shifts and menu changes. On the other hand, you can exe­
cute most (but not all) operations by typing one or more command names with alpha
characters, then pressing IENTERI. You will probably want to choose an execution stra­
tegy that is intermediate between these two extremes, according to your personal skills
and preferences .

• If you are good at remembering where (which menus) to find various commands,
you may prefer to use menu keys for executing those commands or entering them
into programs. For manual operation, it is less visually disruptive to press a menu
key than to start up a command line for typing the name of a command. Also, you
don't have to remember exactly how to spell each command. For programming,
using a menu key to enter a command has the additional advantage that the key
press also automatically enters spaces as necessary around the command name.

• If you don't like using menus, or whenever you can't find a command in a menu, you
can just type the name of any command that does not appear on the keyboard or in
the current menu. All of the characters used in command names are available (and

-80-

r

Object Creation 4.2

labeled) on the alpha-shifted keyboard. This approach also has the advantage of
leaving the current menu unchanged.

Regardless of which command execution method you prefer, you should select an alpha
keyboard style. By default, 0 acts as a single-key shift, where only the next key (not
counting @il and [2J) is modified to produce an alpha character. To enter several con­
secutive alpha characters, you can hold 0 down while typing, or press 00 initially
to activate alpha-lock, then 0 again after typing, to turn alpha-lock off. If you fre­
quently find yourself forgetting to press 0 twice for multi-character entries, you might
consider setting flag - 60, which alters the behavior of 0 so that a single press activates
alpha-lock. With that choice, you must always press 0 or IENTERI to turn off alpha­
lock.

A similar style choice applies to user mode (section 7.2). Again, by default [.::5J IUSRI acts
as a single-key modifier unless you press it twice consecutively to lock on user mode.
This style is appropriate when you have a few user key definitions that you use occasion­
ally. But if you switch hack and forth to user mode frequently, you can set f1ag - 61 so
that a single press of [.::5J IUSRIIocks user mode.

4.2.2 Navigating the Menus
The HP 48 menu system provides convenient, laheled access to the hundreds of HP 48
commands that don't appear directly on the keyboard. Most huilt-in menus are availahle
hy pressing a two-key combination. For those that arc labeled on the keyboard, such as
MODES or MEMORY, the first key is the left-shift key [.::5J (~ usually activates an input
form--see section 4.5). IMTHI and IPRGI also act like shift keys, since they activate a menu
of menus, where you press one of the menu keys to activate an actual command menu.
Each menu contains one or more "pages" of up to six operations each. When you
activate a menu by means of the menu key combination, the first page of the menu is
visible in the menu labels. INXTI pages forward through a menu, cycling back to the first
page after the last page. [.::5J IPREVI pages backward, wrapping to the last page from the
first.

Some menus have even more of "tree" structure--any menu page may contain tabbed
submenu keys (e.g.IPRGI ~LlSE ~). This design may require extra keystrokes in
some cases, compared to a less hierarchical layout, but the idea is to minimize the
search time by providing submenu labels that guide you to the key you need. Many sub­
menus also contain a final entry that reactivates the parent menu.

There arc two methods to enter a menu on a page other than the first:

• The last menu operation ~ IMENUI returns to the menu and page that was active
before the most recent use of a menu key combination. If, for example, you are

·81-

4.2 Object Creation

viewing the second page of the matrix menu (IMTHI ~MATR~), and switch to the
second page of the program branch menu (IPRGI ~BRCH~ INXTI), then after using any
of the branch menu keys you can return directly to the second page of the matrix
menu by pressing ~ IMENUI. Pressing ~ IMENUI again switches back to the second
page of the program branch menu. Note that when you leave a menu by using one
of the submenu keys within that menu, the menu is not "recorded." The last menu
operation is designed to take you back to the previous menu page that you used, not
just to an intermediate step along the way .

• Executing MENU or TMENU with a numerical argument (section 7.3) activates the
menu and page specified by the argument.

4.2.2.1 Exiting
The HP 48 menu system is defined without a "home menu" --there is no master menu to
which you return when you are finished with the current menu. Moreover, there is
always a menu present, except in the plot environment's and the EquationWriter's
graphics scrolling modes. Thus, in general you don't "exit" from any menu, you just
select another menu. There are two kinds of exceptions to this general rule:

• "One-shot" menus. For most menus, you are as likely to select two consecutive
operations from a menu as you are to select one then return to the previous menu.
There are several menus, however, that are designed for a single choice followed by
an automatic return to the previous menu. The plot type menu (- PTYPE-) and the
regression model menu (-MODl-) are examples of this type of menu. The latter
two menus also include keys for returning to the previous menu when you don't use
any of the current menu's operations (-NONE= for the repeat menu, and ~EXIT~ for
the zoom menu). In the plot type and regression model menus, you can make a
similar exit by pressing the menu key corresponding to the current type, or by going
directly to another menu.

The various RULES operations menus also belong to this category, although execut­
ing a RULES operation does not return to the top-level menu containing -RUlES­

but instead activates the transformations menu appropriate for the newly
transformed subexpression (which may be the same menu). To exit from one of
these menus you press a cursor key to select a new subexpression and return to the
main RULES menu.

• The main RULES menu in the EquationWriter and the function (~FCN~) menu in
the plot environment menu permit multiple operations, but are sub-menus of other
menus that are not directly aceessible via labeled keys. The sub-menus therefore
include an key that returns to the parent menu, such as ~PICT~ for the FeN menu.

-82-

Object Creation 4.2

4.2.3 CANCEL
The use of I ON I to terminate environments like the EquationWriter or the command
line is one example of the use of the CANCEL operation. The basic purpose of CAN­
CEL, executed by pressing I ON I , is to provide an exit path from ongoing operations
back ultimately to the standard environment. This sometimes can be a multi-step
process--for example, when you are using the interactive stack from within the Matrix­
Writer (section 4.6), a first []lli] exits from the interactive stack and returns to the
MatrixWriter display, a second clears the command line, and a third terminates the
MatrixWriter and returns to the standard environment.

CANCEL also serves to halt program execution, including the programs you create and
built-in commands like f or COlCT that may take a significant amount of time. It is a
"gentle" form of interruption, in that the stack is not cleared and no stored objects are
affected (except for the local variables associated with currently executing programs). In
general, you can use CANCEL as the all-purpose "quit this and start fresh" operation.
If you are using any environment where the standard keyboard is unavailable, and there
is no menu key provided for exiting, pressing []lli] will get you back to the standard
environment.

One exception to the general behavior of []lli] occurs when you have used ::::CALC:::: in a
input form (section 4.5). You can not use []lli] to return from the stack environment to
the input form; you must use the menu key -CANCL= .

See also section 9.6.1 for more information about CANCEL's behavior as an error condi­
tion.

4.3 Command Line Object Entry
The central focus of the HP 48 is objects, the elements of data or procedure that you (or
the calculator) enter as representations of the calculations you are making. We dis­
cussed the theory and meanings of the various object types in Chapter 3; here we will
look more closely at how you create new objects.

The basic mechanism for the manual entry of objects is the command line. The com­
mand line derives its name from the fact that you can enter a "line" of commands--a
series of calculator instructions that are executed all together when you press IENTERI .

A better term might be command editor, since it is not restricted to a single line, or
better yet, object editor, since commands are only one of the many kinds of obje::ts you
can create there. In any case, you create objects by typing text representing the '()bjects
into the command line. You terminate a particular editing session by pressing IENTERI or
any of the other keys that perform an implicit ENTER. At that point the HP 48 converts

-83-

4.3 Object Creation

the command line text into the objects you specified.

The double-width IENTERI key has always been the trademark of HP RPN calculators
that sets them apart from so-called "algebraic" calculators with their prominent 0 key.
In all RPN calcul:,'l.tors including the HP 48, the fundamental purpose of ENTER is to
terminate object entry. In pre-HP 28 calculators, the only objects that can be entered
are real numbers, so that terminating entry just means turning off digit entry mode and
leaving the completed number in the X-register. In the HP 48, ENTER retains the basic
action of terminating entry and entering new objects. However, because the HP 48
replaces ordinary calculator digit entry with a command line that can contain any
number of objects and commands, ENTER can invoke almost any of the calculator's
capabilities as well as merely entering numbers onto the stack.

The fundamental definition of the HP 48 operation ENTER is:

Take the text in the command tille, check it for correct object ~yntax, then
treat it as a program and execute the objects defined there.

This is a much-elaborated version of the old "terminate-digit-entry and enter a number
onto the stack," but in simple cases, it amounts to the same thing. If you press a series
of digit keys, then IENTERI , you will end up with a number in level 1. The same key
sequence on an HP 41 or a similar calculator yields the same result. For the sake of
keystroke efficiency and to preserve additional consistency with other RPN calculators,
many HP 4H keys besides IENTERI also execute ENTER as well as their own specific defin­
itions. This feature is called implicit ENTER, to distinguish it from explicit ENTER,
which is the direct usc of the IENTERI key.

An example of the use of implicit ENTER is the sequence OJ IENTERI W [±]. This
adds the 1 and the 2, just as it always has in HP RPN calculators. At the time you
press [±] , the 2 is still in the command line; the implicit ENTER performed by [::±J puts
the 2 on the stack before the addition is performed.

4.3.1 Key Definitions and Entry Modes
A key definition is the object assigned to the key, i.e. the object that is used when the
key is pressed. We say the object is "used" rather than "executed", because the object
mayor may not be executed, depending on the object type and the current entry mode.
Any key docs one of two things when you press it:

• The key acts as a typing key, merely adding one or more characters to the command
line. In this case, for example, it might be the name of the key definition object that
is used rather than the object itself.

• The key acts as an immediate-execute key, causing any other kind of action.

-84-

Object Creation 4.3

With this distinction, we can sort HP 48 keys (including menu keys) into three types:

1. Keys that are always typing keys. These include the alpha-keyboard character
keys, the digit keys, and the delimiter keys, plus the program structure word menu
keys in the program branch menu (IPRGI-BRCH-).

2. Keys that are always immediate-execute keys. These are keys that never add char­
acters to the command line. Examples are IENTERI and menu selection keys such
as IPRGI or IMTHI .

3. Keys that may act either as immediate-execute keys or typing keys, according to
the current entry mode. These mode-dependent keys are the most common key
type in the HP 48; nearly all are command keys.

(Here we are speaking only of the standard key definitions, i.e. the keyboard that is
available when user mode is off. The key definition object of any key can be changed-­
see section 7.2--but the ideas presented here are common to the user and standard key­
boards.)

The mode-dependent keys are so-called because they are sensItIve to the four entry
modes that determine their behavior. The entry modes are as follows:

• Immediate mode. All mode-dependent keys act as immediate-execute keys. This is
the default mode, to which the HP 48 normally returns after ENTER.

• Algebraic mode (ALG annunciator in the status area). Mode-dependent keys with
definitions that are functions permitted in algebraic expressions, such as SIN, +, or
LOG, act as typing keys. Parentheses are automatically added after the function
names if appropriate. Other mode-dependent keys act as immediate-execute keys.

• Program mode (PRG annunciator). All mode-dependent keys corresponding to pro­
grammable commands act as typing keys. Spaces are automatically added around
the command names to separate them from previous command line entries. There
are a few mode-dependent keys that have no command line text associated with
them, such as ~ SSE, or programs used as user key definitions; these keys just beep
when pressed in program mode.

• Algebraic/program mode (ALG PRG annunciator). Same as program mode, except
that the names of functions are not surrounded by spaces, and parentheses are
added where appropriate.

Most command keys are mode-dependent, but there are a few that always act as typing
keys. These are the program structure words (section 9.2) found in the program branch
menu, plus HALT and PROMPT (section 12.6.1).

-85-

4.3 Object Creation

Whether or not a key performs ENTER depends on more than just the current entry
mode. It is true that only immediate-execute keys may do ENTER; there are no cases
where a key acting as a typing key adds characters to the command line, and then also
does ENTER. Furthermore, the great majority of immediate-execute command keys do
perform ENTER. For example, all keys for commands that use stack arguments do an
implicit ENTER to insure that the command is applied to the most recently entered
argum~nts, including those that are still pending in the command line. This saves you
the extra IENTERI keystroke that you would otherwise need.

A few command keys do not perform ENTER regardless of the entry mode. The
corresponding commands control calculator numerical modes and require no arguments:
~ IpOLARI , "STD" , "DEG" , "RAD" , "DEC" , "HEX" , "OCE and "BIN". Because the
modes can affect the interpretation of command line numbers, these exceptions to the
general implicit ENTER rule are provided to allow you to change the modes after you
have started a command line.

4.3.2 Controlling the Entry Mode
The preceding key-behavior rules may appear elaborate, but in actual usc they arc gen­
erally not difficult to master (in fact, you seldom need to think about them at all). This
is due in large part to the fact that the HP 48 autolllatical~y changes its entry mode to
match the objects that you enter. Also, you can manually change the entry mode for
those cases when the HP 48's automatic choice is not what you want.

1. The default mode following an ENTER is immediate entry mode. This choice is
derived from the traditional hehavior of RPN calculators, where pressing a func­
tion key causes immediate execution of the function. When you type digits or
letters to start a new command line, the HP 48 remains in immediate entry mode.

2. The HP 48 automatically changes to algebraic entry mode when you press 0 to
start entry of a quoted name or an algebraic object. The ALG annunciator appears.

3. If you press @2] 1« »1 or @2] [J]] to start entry of a program or list, the HP 48
automatically switches to program entry mode, indicated by the PRG annunciator.

4. While the HP 48 is in program entry mode, pressing 0 activates
algebraic/program mode, turning on both the ALG and PRG annunciators. This is
intended to aid entering algebraic objects within programs and lists. Prcssing a
key corresponding to an object or delimiter that is not allowed in algehraic expres­
sions restores ordinary program mode and turns off the ALG annunciator.

This progression works reasonably well to spare you from having to control the entry
mode yourself, especially if you are entering one object at a time. However, there are
some circumstances in which you may need to override the automatic entry mode

-86-

Object Creation 4.3

selection. To accumulate a series of commands into the command line without creating
a program object, you must turn program mode on to prevent the commands from exe­
cuting. Or, to enter a function into a program following a quoted name or an algebraic
object (e.g. 'X' SIN), you must turn off algebraic/program entry mode to prevent the
HP 48 from adding parentheses to the function name. These mode changes are made
with ~ I ENTRVI :

• In immediate entry mode, pressing ~IENTRVI turns on program mode.

• In program entry mode, ~IENTRVI turns on algebraic/program mode.

• In algebraic/program mode, ~IENTRVI restores program mode (turns ALG off).

Note that once you have selected program mode, you can't return to immediate mode
while the current command line is still active.

4.3.3 ENTER in Detail

Now that we've established at some length which keys perform ENTER, and under what
circumstances, we can return to the precise definition of ENTER. The following are the
actions that take place at every explicit or implicit ENTER. (The normal ENTER
sequencc described hcre can be redefined; see section 7.4).

1. A copy of the current stack is saved. It is important to note that the stack save is
performed before the command line is processed. If the ENTER is caused by an
immediate-execute operation key, the stack save also precedes execution of the
operation. This means that although breaking up a series of commands with
ENTER (either explicit or implicit) gives the same computed results as executing
all of the commands at once in a single command line, the results of pressing ~
IUNDOI at the ends of the series arc different. For example, each of the following
keystroke sequences adds 1 + 2 and returns 3 to the stack. However, ~ IUNDOI

gives a different result in each case (assume an empty stack to start with):

Keystrokes:

-87-

2:
1 :

1 :

Stack after UNDO:

2

(empty)

4.3 Object Creation

2. The command line text is parsed--converted from text into a series of objects.
(This step can be bypassed or postponed by using vectored ENTER--see section
7.4). First, the text is broken into object strings, individual portions of the com­
mand line text that will become objects. The object strings are defined by delim­
iters and separators:

• A delimiter is one of the symbols (,), " ", [,], {, }, «, », _, #, GROB, C$,
and DIR, that identify the different object types. The comment character @
can also be considered as a delimiter, even though it doesn't identify an object.

• A separator is either a space, a newline, a semicolon, or whichever of "." or ","
is not the current fraction mark. Separators arc used to separate real
numbers, commands, and names, which have no special delimiters, from other
objects, and are generally used to make the command line more legible.
Unlike delimiters, separators can be repeated--extra ones are ignored.

For example, the command line

12345.789 'FRED' "123" « DROP 'SAM' STO » PETE

is broken into the object strings
12345.789

'FRED'
"123"

«DROP 'SAM' STO»
PETE

The process is repeated as necessary within algebraic objects, programs and lists,
which contain other objects. In the above example, the program objcct is further
broken into the object strings DROP, 'SAM', and STO.

3. Each object string is checked against the syntax rules appropriate for its object
type. As each objeet string passes its tests, an object is created from the string
and pushed onto the stack. (This stcp is invisiblc--you won't see a stack display
again until all of the new objects have bcen executed.) If any object string is
found to violate a syntax rule, all of the newly created objects are dropped from
the stack, and the command line is reactivated, with the cursor placed at the posi­
tion in the command line where the error was encountered.

4. When the command line has successfully been converted into stack objects, a copy
of the original text string is saved in the command stack (unless it has been dis-

1
1

I
J

I
I
I

.1
I

I
I

I
i'

abled). Normally, this only happens if there are no syntax errors. However, if the J
HP48 runs out of memory while it is creating the command line objects, the com- .1

mand line is saved, giving you a chance to try again after you have cleared some
additional memory. If the command stack is disabled, the command line text is

-88-

Object Creation 4.3

never saved.

5. The new stack objects are combined into a program, which is then executed.

6. If the ENTER was implicit, the operation associated with the key that started the
ENTER is executed.

7. If vectored ENTER is in effect, the post-entry object (I3ENTER) is executed.

8. When the command line program plus the implicit ENTER key operation are fin­
ished, the HP 48 checks to see if there have been any keys pressed since the
ENTER. If there have, the "busy" annunciator remains on, and those keys are
processed.

9. Finally, when all execution is complete, and no unprocessed keys remain, the stack
is displayed (unless some special display supersedes the normal stack display) and
the busy annunciator is turned off. Since the stack display can take an appreciable
amount of time, the display is postponed when keys are pending, to speed up the
overall process.

There are several advantages of using command lines instead of immediate-execute
command keys:

• You can repeat a sequence of commands without having to make the sequence into
a program. Each time you execute the sequence, you can recover the command line
with ~ ICMOI , then press IENTERI to execute it again. You can also modify the
sequence each time you execute it.

• If you get an unexpected result, you can press ~ IUNool to recover the stack, then
~ICMOI to reexamine what you did.

• A single command line is the fastest way to execute a command sequence from the
keyboard, since you don't have to wait for the stack display after each object is exe­
cuted.

• Because the command line is a program, you can do anything within the command
line that you can in a program--create local variables, use program branch structures,
HALT, single-step, set error traps, etc.

You can also turn this picture around and imagine a program as a command line for
which execution is postponed. You can take any command line, surround it with «
» , and obtain a program that enters level 1 unexecuted when you press IENTERI .

4.3.3.1 Comments
The @ character is a special delimiter that allows you to embed comments within com­
mand lines. A comment is text that is not converted into any object; it is discarded

-89-

4.3 Object Creation

when the command line is entered. This is obviously of little use when you are creating
objects directly on the HP 48; however, it is very useful when you are creating or editing
objects using a word processor on a personal computer. In that case, comments can be
very helpful in documenting a program for later review, or in keeping track of stack
objects as you are writing a program. When you transfer the program to the HP 48, the
comments are automatically removed by the calculator.

Any text between two @ symbols in the same line is treated as a comment. This allows
you to insert a comment at any point between objects--in fact, at any point where a
space is allowed, such as between the elements of a vector (within string and name
objects, the @ is treated as an ordinary character). If there is only one @ in a line,
then all of the line to the right of the @ becomes a comment. The latter form is most
common in programs, where you might include comments at the end of most program
lines.

4.4 Object Editing and Viewing
Editing an object is the process of recreating a text representation of the object, chang­
ing the text, then constructing a new version of the object from the altered text. For
most types of objects, this is achieved by recalling the object to the command line using
the EDIT operation, ~ IEDITI. This copies the object in level 1 to the command line in
text form, automatically activating program entry mode. There you can make any
desired changes, then press IENTERI to replace the original object with the modified ver­
sion (more precisely, IENTERI drops the original object, and executes the command line).
If you press I ON I instead, the command line is abandoned and the level 1 object is left
intact.

If the level 1 object is a name, ~ IEDITI does not edit the name itself, but instead recalls
the object stored in the corresponding global variable or local variable to the command
line. When you press IENTERI the modified object replaces the original version in the
variable (that is, the stored object is replaced with whatever object ends up in level 1
after the command line is executed). [Qf[] cancels the edit, discarding the command line
(and the level 1 name), and leaving the original stored object unchanged. If you do
want to edit a name object, you must use CZJ , as described in the next section. (VISIT,
which edits a stored object on the HP 48S /SX, is not available as a separate operation
on the HP48G/GX.)

~ IEDITI automatically activates the edit menu, which contains additiona:I editing opera­
tions. You can also activate this menu when you create a command line to enter new
objects, or restore the menu after switching to another menu, by pressing ~ IEDITI
whenever the command line is already present. The menu contains the following opera­
tions:

·90-

Object Creation 4.4

• =SKIP-= and ~ move the cursor forward and backward by several characters at
at time, so that you can you move the cursor quickly to a point where you wish to
make changes. Each skip moves to the next or previous non-space character that
follows a space or a newline.

• ~DEL-~ and ~-DEL~ "move" in the same manner as =SKIP-= and --SKIP- , except
that they delete the characters between the original cursor position and the destina­
tion (so the cursor doesn't move on the display). ~DEL-~ deletes to the right, from
the current character up to (but not including) the destination character. ~-DEL~
deletes to the left, from the character to the left of the cursor through the destina­
tion character to the left.

• ~ ~ DEL- ~ is an extension of ~ DEL- ~ , deleting all characters from the cursor posi­
tion through the end of the current display line. Similarly, ~ ~-DEL~ deletes all
characters preceding the cursor position on the current line. ~ ~-DEL~ is
equivalent to ~~, and ~~DEL-~ is the same as ~IDELI

• ~INS~ turns insert mode off (and back on, if you press it again), so that subsequent
typing overwrites the characters under the cursor instead of inserting new characters.
This is useful when you arc replacing a sequence of command line text with another
of comparable size. The state of insert mode is preserved during the current edit
session until you deliherately change it, but insert mode is always restored after
IENTERI.

• ~ISTK~ activates a restricted form of the interactive stack (section 5.5), wherc the
menu contains the single key ",ECHO",. This key echoes, i.e. copies, the object
selected by the stack pointer to the command line at the cursor location. After
echoing any number of stack objects, press IENTERI or [QN] to return to normal com­
mand line entry.

-ECHO- is particularly useful when you want to include in a program or a list an
object that you have previously entered or computed, without having to retype the
object. It also provides a means by which you can create an algebraic object using
the EquationWriter, or an array using the MatrixWriter, then enter the object into a
program without having to retype it in command line format.

4.4.1 Viewing Objects
The command line also is the standard mechanism for viewing all of an object even
when you don't want to edit it. The standard display will show up to four 22-characters
lines of the level 1 object, but often this isn't enough. Since viewing an object too large
for the display requires many of the same display scrolling operations as editing, the
HP 48 just uses EDIT as its default object viewer. To streamline the operation, the [2J
key (when no cursor is present) provides single-key access to edit/view an object. This

-91-

4.4 Object Creation

key choice is associated with the interactive stack. You can picture the standard display
as a window on the stack, which shows all of the level 1 object, and one-line displays of
the remaining stack objects. Then just as you press [ZJ to view the objects above the
initial display, you press [S[] to view the rest of the first object, hidden "below" the initial
display.

For most types of objects, viewing an object with [S[] is the same as editing the object
with @JJ IEDITI. For names, [S[] is the only method of editing the name itself, since EDIT
recalls a stored object instead of the name. For unit objects and algebraic objects, [S[] ,
with its emphasis on viewing, activates the EquationWriter to display the objects. Simi­
larly, for arrays [S[] copies the object to the MatrixWriter instead of to the command
line. For these three object types, therefore, you must choose which style of
edit/viewing you want:

• For an algebraic object or an unit object, use [S[] for the EquationWriter when you
want to view the object in a "textbook" form, or if you want to apply operations to
the object using RULES in the subexpression menu. Use @JJIEDITI when you want to
edit the object in a way that changes the structure or formal value of the object. For
example, consider the algebraic object 'A+B+C+D'. To commute the last two
terms to obtain 'A + B + D + C', you can use RULES since the operation is an identity
operation that preserves the formal value of the expression. But a modification of
the expression to 'A + (B + D) /C', for example, is essentially the entry of a totally new
expression where you are just using the original to save a few keystrokes. For this
type of change, RULES is of little use; @JJIEDITI is the appropriate choice .

• For arrays, [S[] to the MatrixWriter is almost always the best choice because of the
superior viewing and editing resources it provides compared with the command line.
One case where the command line does provide an advantage is that of two- and
three-element vectors. For these objects, the command line allows you to enter or
edit the components in polar coordinates (section 11.3.1), whereas the MatrixWriter
can deal only with rectangular coordinates.

4.5 Input Forms
Many of the HP 48's more elaborate computation resources require the specification of
several parameters, including calculator modes, input data, and choices among various
calculation options. For example, to compute an integral, you naturally must specify the
limits of integration, the integrand, and the variable of integration. But you must also
decide whether you want a symbolic or numerical result, choose an accuracy tolerance
(for numerical integrals), and, when trigonometric functions are involved, choose an
angle mode. Now, it is one of the profound strengths of the HP 48 that you can enter
or compute each of these parameters in a separate, independent and programmable
operation, providing great flexibility and extensibility. However, especially for an HP 48

-92-

Object Creation 4.5

novice, it is often helpful to have a single, focused, interactive interface in which you can
enter and review all of the parameters together, then say "OK" and have the calculator
actually perform the calculation. This is the motivation for input fonns. For example,
the screen for alarm entry looks like this ~ITIMEI[2J~ OK ~):

MESSAGE:
TIME:
[lATE:
REPEAT:

8: 15: 00 PM
5/30/93

None
ENTER ALARM MESSAGE 1EII ___ mr::mI.:TIaI

Here each of the alarm parameters are represented by a dedicated area on the screen,
consisting of a label and a parameter field. One parameter field is active at any time,
indicated by inverse-video characters. You can change the active field by using the
cursor-arrow keys. As you do so, the instructions displayed immediately above the
menu key labels change accordingly.

The two menu keys =CANCL= and ~ OK ~ are common to all input forms, representing
the two methods of exiting from a form back to the stack environment. You can also
use IENTERI interchangeably with ~ OK ~ , or [MJ instead of the menu key -CANCL- .

~ OK ~ accepts all of the data or choices in the various fields, and completes any pending
actions associated with the form. In the case of the alarm input form, ~ OK ~ sets an
alarm according to the parameters in the current input form display. In the modes
input form used as an example below, the action is to go ahead and set the flags (sec­
tion 7.1.3) that represent the indicated mode choices. -CANCL- also terminates the input
form, but does not complete any pending actions, and discards any entries that you have
made within the form. There are some exceptions; for example, in the memory browser
(section 6.1.3) you can create, copy, and purge global variables. These actions are effec­
tive immediately, and are not reversed even if you subsequently use - CANCL- to leave
the main input form.

~ OK ~ and -CANCL- are also used to exit from a sub-environment activated from within
an input form, such as the command line used to enter an object for the alarm message
field. In these cases, the actions of ~ OK ~ and =CANCL= are analogous to those at the
top level, namely to keep or abandon any entries, then exit the sub-environment (but
not from the entire input form).

-93-

4.5 Object Creation

Also common to all input forms (in the second menu page) is =RESET = , which you can
use to reset one or all of the input form parameters to default values. = RESET = (you can
also use IOELI) activates a display like this:

ENTER ALARM ME$$AGE --
Pressing ~ OK ~ stores a default value for the originally highlighted parameter. Pressing
[SZJ then ~ OK ~ resets all of the parameters in the input form. In some cases, the
default is a specific value or choice, such as Std in the NUMBER FORMAT:. In other cases,
the default is just an empty field.

An input form is essentially an "input organizer," which presents all of a complex
operation's parameters together on the screen. Each parameter has a corresponding
entry field, of which there are three general types, distinguished by their contents and
their respective enter/modify/review mechanisms: check fields, list fields, and data
fields.

4.5.1 Check Fields
The simplest kind of parameter field is a check field, which enables a simple yes/no
choice. The modes input form (~IMOOESI) contains three check fields:

:::::::::::m:: CALCULATOR MODE$:m::::mm::
NUMBER FORMAT: St d
ANGLE MEA$URE: Rad i ans
COORD $'I'$TEM: Rect angu 1 ar-
!! BEEP ~CLOCK FM,

DI$PLA't' TICKING CLOCKO;> __ mrraDJi6mmiJlIII3I

When a check field is active, as in the display here, the instructions at the bottom ask a

-94-

Object Creation 4.5

question (DISPLAY TICKING CLOCK?), and the menu includes - -!CHK-. Pressing this key
turns a check mark on and off in the check field, with a check indicating a "yes" answer
to the question, and no check meaning "no." In the current example, the standard beep
is turned on, the clock is turned off, and the fraction mark is a period, not a comma.
You can also use [ill to toggle the check mark on and off.

4.5.2 Choose Fields
The NUMBER FORMAT:, ANGLE MEASURE:, and COORD SYSTEM: fields in the modes input
form are examples of the second type of input form parameter field. The choose field
offers a choice among a specific set of options, like a check field except that there are
generally more than two choices. When a choose field is active, the -CHOOS- key
appears in the menu. Pressing this key activates a choose box, which is a list of avail­
able choices, superimposed on the previous display. Here is the choose box for the
modes form NUMBER FORMAT: field:

a:r::m: CALCULATOFi MODES :G:::::m:::
NUM Standard
ANGI Fixed
COOFi Sc i ent if i c ar
~ BE Eng i neer i ng
CHOOSE NUMBEFi DlSPLA'i FOFiMAT ____ mmoll!I3lll

Within a choose box, the current choice is indicated by the inverse-video field, which
you can move up or down the list with CZSJ or c:z::J. A choose box display can show up to
five choices at a time; if there are more, the display shows arrows at the right corners,
as illustrated by the TYPE: field in the plot input form:

:[:::::: ii
Funct10n HPE

EQ: Polar
lNDE PD~r alYleEt ric . 5

AU 1ff q 2
Conic .,J.. •

CHOO. _ ... __ . . __ . ____ mmoll!I3lll

You can also change the selection by pressing 0 followed by the first letter of the
desired selection (if there is more than one with the same first letter, each press of that

-95-

4.5 Object Creation

letter key moves to the next one down the list, wrapping around to the start of the list
when necessary). Once you have moved the highlight to the desired choice, ~ OK ~

enters that choice into the choose field and closes the choose box; -CANCL- reverts to
the main display without changing the previous choice.

It is not necessary to activate a choose box to make a new selection in a choose field.
The trick of pressing a letter key to move to the next selection starting with that letter
works even when there is no superimposed choose box. Also, you can cycle through the
possible choices (downwards through the choose box list) by pressing r:±:z.::J. Using r:±:z.::J
is particularly convenient when there is only a small number of easily-remembered
choices, such as the degrees/radians/grads choice in the ANGLE MEASURE: field of the
modes input form.

Choose fields are also used as in initial step in the activation of an input form with mul­
tiple main displays. ~ISYMBOLIcl activates this display:

RAD~================~ { HD

4:
3:
2:
1 :

Different iate."
lay 1 or po 1 y".
I so 1 at e var".
So 1 ve quad".

____ mIm!l.:n:311

Here you must select one of six symbolic manipulation input forms, according to the
more specific operations you wish to perform. The last-command operation ~ICMDI)
provides another example of a choose box, where the choices are the last four command
lines. You can also create custom-made choose boxes in programs, as described in sec­
tion 12.6.5.

4.5.3 Data Fields
The last type of input form parameter field is the data field, which allows you to enter
and display a complete object. The MESSAGE: field in the alarm set input form is an
example of a data field; there you can enter a string object for an appointment alarm, or
any other type of object for a control alarm. Since a data field is for object entry, the
full object entry resources of the calculator are available:

• Pressing any number or alpha-character key, or any command key (e.g. [IDN]),
activates an empty command line, where you may type in an object for the active
field. If the field is one that preferentially accepts algebraic objects or names (like

·96-

Object Creation 4.5

the EQ: field in the plot input form), the " delimiters automatically appear in the
command line.

• ~EDIE (which appears in the menu when a data field is active) or t5J IEDITI copies
the object currently displayed in the edit field to the command line for modification.

• t5J IEQUATIONI and ~ IMATRlxl activate the EquationWriter and the MatrixWriter,
respectively.

• -CHOOS- appears in the menu when the object in a data field might reasonably be
reused in other contexts, or in repeat usages of one input form, and therefore might
be stored in a global variable. -CHOOS- activates a choose box containing a list of
variables in the current directory containing objects of a type suitable for use in the
data field. In the EXPR: field of the integration input form (~ISYMBOLlCI- OK -),

-CHOOS- might show a display like this:

HI! :::::::::::::: ' .. T .. .- T .. :::::::::::::::mm:
E:-:PF: FUNes IN { HIlME } •

'JAF::
F:ESU EX2: I W'2+3*X+",

EX3: I SIN(X)/X I

ENTE.: .. _ ___ ._ ..
_~_rnmmmnllB

Selecting one of the displayed objects copies it to the data field. Notice that ~ NEW~
appears in the menu with the choose box. Pressing that key activates the new vari­
able input form from the memory browser (section 6.1.3) to let you enter an object
for the data field, along with a name for storing the object as a global variable. You
can also press -CHOOS- again, which displays the memory browser directory choose
box for changing directories.

In all of these cases, when you press ~ OK ~ to exit from an object editor, the newly
entered object is moved to the active data field, and the input form highlight moves to
the next field. While the command line is present in an input form, you can replace the
input form menu with any ordinary command menu for use in object entry or editing.
Then you can use the permanent IENTERI and [QNJ keys to finish the editing rather than
having to first reactivate (with t5JIEDlTI) the menu with ~ OK ~ and =CANCL=. The nor­
mal edit menu (with -SKIP-- etc.) is present as the second page of an input form edit
menu.

-97-

4.5 Object Creation

Note that the use of IENTERI or ~ OK ~ to exit from multiple levels of activity within an
input form can occasionally trip you up. For example, if you are entering data in the
alarm set input form, you might start by typing the alarm message, then IENTERI. This
automatically moves the highlight to the hour field. Then you type in the hour, press
IENTERI , then enter the minute. This leaves the highlight on the second field; in most
cases, the default 00 is fine. In that case, you have to remember not to press IENTERI to
move on to the next field. Because there is no command line, IENTERI (or ~ OK ~) ter­
minates the entire input form, setting the alarm as specified before you have even
entered the date. You must remember to use one of the cursor keys to change fields
when you made no changes to the current field.

Most data fields are restricted in the types of objects that you may enter. If you enter
an object of an inappropriate type by any of these methods, a display like this appears:

MESSAGE:

TIME.A. Inval id
DATE obj ect type
REPE~ .. ~.--~~~--------~
[1]
~ ____ .:rraI

~ OK ~ reactivates the command line with the disallowed object. - TYPES- also appears in
the menu; it displays a choose box style list of allowed object types. Selecting an entry
from the list and pressing ~ NEW~ activates a new command line with the delimiters (if
any) for the selected object type already entered. "TYPES" is also available before you
start object entry, in the second page of the input form menu when a data field is active.

A data field can also only accept aile object. If you enter a multi-object sequence into
the command line and press ~ OK ~ , the entire command line is converted to a string
object. If a string is not a valid object type for the active data field, you will see the
Invalid Object Type error display, and the string will remain in the command line. This
behavior also occurs when you attempt to enter a command name into a field that
accepts only certain object types, such as entering SIN into the VAR: field of the integra­
tion input form.

One of the HP 48 principal strengths is its ability to compute new objects as well as let­
ting you type them in, and that capability is available even within an input form environ­
ment. Next to - TYPES= in a data field menu is ~CALC~ , which suspends the input form
and reactivates the standard environment. If there is an object in the active data field, it

·98-

Object Creation 4.5

is copied to level 1 of the stack. The status area shows the title of the suspended input
form, and the instructions for the active field, as in this example from the EXPR: field of
the integration input form:

~m1!:!mm&: INTEGFiATE ~m[]:%
ENTEFi El-:PFiESSIIlN

4:
3:
0'") • .::....
1 : 1IffII ___ mI::ml.:II3I

You can switch hetween this status area display and the normal standard environment
status area display hy pressing ::::STS:::: (staws). The HP4X ean preserve the suspended
input form indefinitely while you perform arhitrary caleulations. This includes using
other input forms, which may in turn he suspended. There are two restrictions:

• Stack recovery (~IUNDOI) is di~ahled .

• Yuu can't execute HALT or PROMPT (see section 12/>.1).

If you change menus during the calculations, the input form title reappears in the status
area, along with the instructions PRESS [CONTI FOR MENU. This indicates that [<5J ICONTI

returns the menu containing -CANCL= and :::: OK :::: , which you need to reactivate the
suspended input form (IENTERI and []lli] do not return to the input form). The normal
status information display is also restored if you previously used ::::STS:::: to suppress the
input form title (indicated by the white box in the ::::STSo:::: label).

When you have completed calculations in the stack environment, :::: OK :::: return to the
suspended input form, entering the object from stack level 1 into the active data field.
If the stack is empty, or you use = CANCL- instead of :::: OK :::: , the previous contents of
the field are left unchanged.

There arc a few examples of data fields that have a choose box option. These are cases
where the valid data choices are relatively few. For example, when the modes input
form NUMBER FORMAT: field contains Fix, Sci, or Eng, a data field appears next to the
format choice field, for which the only valid entries are the real integers 0-12. When
this field is active, =CHOOS- appears in the menu; it displays a choose box that contains
each of the 13 integers. This is not a major convenience, since it is certainly faster to
just type an integer directly into the the data field, but at least the choose box shows you
the valid range of entries.

-99-

4.5 Object Creation

The operations described in this section are common to most input forms. There are
severa'! more operations that are specific to individual input forms. These typically
appear in the third and fourth menu key labels in the main input forms. Examples are
~STEP~ in the differentiation input form, ~PRED~ in the statistics fit data form, and
~FLAG~ in the modes form. These special operations are described in later chapters.
You can also include custom input forms in your own programs, as described in section
12.6.5.

4.6 The Matrix Writer
Although command line entry of arrays is straightforward and efficient, the lack of any
automatic formatting as you enter numbers makes it easy for you to lose track of which
element is which. When you edit an existing matrix, its rows are displayed on separate
lines, but there is no attempt to align the columns. With the MatrixWliter, the HP 4H
provides formatted entry, viewing, and editing of arrays, plus other operations that are
useful in array analysis.

There are two methods of activating the MatrixWriter:

• To start entry of a new array, press ~ IMATRlxl. This activates the MatrixWriter
display, with empty element cells .

• To view or edit an existing array, press [2J with the array in level 1. This copies the
array to the MatrixWriter.

When you start hy pressing ~IMATRIXI, the initial MatrixWriter display looks like this:

The MatrixWriter is modeled in many respects after computer spreadsheet programs.
The row-column format of a spreadsheet is a natural one for working with an array,
where each cell contains one array element, real or complex. Since the HP48 does not
provide symbolic arrays, the MatrixWriter does not implement a spreadsheet's cell for­
mulae, but many other operations are common to the MatrixWriter and spreadsheets.
A spreadsheet's row and column labeling translates to the matrix row and column

-100-

Object Creation 4.6

numbers that are shown in the small font along the top and left edges of the display. As
an additional reference, the current dimensions of the array are shown in the upper left
corner in the format rows·columns. In a new array, the dimensions start as 0'0, as in
the picture above.

Also like a spreadsheet, the MatrixWriter provides a cell cursor that consists of an
inverse-video highlight of the active cell, which you can move to select any cell by using
the cursor keys (prefIxing a cursor key with ~ moves the cursor to the end of the array
in the indicated direction). The row-column indices of the cursor are initially displayed
in the line above the menu keys. If the current cell contains a value, that value is also
displayed with the coordinates in the format row-column: value. When you begin to
enter or edit an element, the index/value line becomes a command line where you can
enter one or more objects.

When you activate the MatrixWriter, a two-page menu of MatrixWriter operations is
provided. You can change to other menus as you enter array elements; to return to the
MatrixWriter menu, press ~IMATRlxl .

The first page of the MatrixWriter menu contains the WID- and ~WID operations,
which you may use to increase or decrease the displayed column width to see more or
fewer characters in any cell. WID- increases the column width so that one fewer
column is displayed (minimum one), apportioning the extra display space to the remain­
ing columns. Similarly, ~WID increases the number of displayed columns by one (max­
imum fIve). The HP 48 remembers the width setting between MatrixWriter sessions.

4.6.1 Array Entry
Entering array elements in the MatrixWriter is quite similar to entering numbers onto
the stack. You can enter one number at a time, following each with IENTERI, or you can
use the command line (which is automatically set to program entry mode) to accumulate
several values to be entered sequentially with IENTERI. The command line is executed in
the usual way (section 4.3.3), so you can include sequences that compute an array ele­
ment as well as entering the element directly. For example, to enter V3 as an element,
you can type 3 Y or 'Y3' ~NUM followed by IENTERI. When you start a command
line for one or more elements, the HP 48 notes the current stack depth. After IENTERI ,

if the stack depth has increased, each new stack object is moved in order to successive
array cells, starting with the highest stack level of the new objects. If the stack depth
has not increased, the array is not changed. Of course, all of the new objects must be
real or complex numbers; if any are other types, then the MatrixWriter exits with the
error message Invalid Array Element. When this happens, the existing array is returned
to level 1, and any objects from the command line are left in higher levels, with the
invalid object in level 2.

·101-

4.6 Object Creation

While the command line is active, the cursor keys move the character cursor within the
comm<lnd line, not the cell highlight cursor. To move the cell cursor, you must first use
IENTERI (or []ill]) to complete command line entry. When you start a new command
line, the array display remains visible during entry, unless you enter a newline, at which
point the array display disappears in favor of the command line. The array display IS

restored when you complete command line entry (or if you back up to a single line).

Although our discussion here uses real arrays for examples, the MatrixWriter works
equally well with complex arrays. To create a new complex array, you must enter a
complex number into cell 1-1. After that, you can enter real or complex numbers; real
numbers are automatically converted to complex by IENTERI. You can not, however,
enter a complex value into an array that has been established as a real array.

To enter a completed array onto the stack and exit the MatrixWriter, press IENTERI with
no command line. [Q[] clears the current command line; if there is no command line,
[Q[] terminates the MatrixWriter hut does !lot enter the current array, which is cli.'>­
carded.

Initially, when you are creating a new array, the array dimensions are not determined;
successive elements that you enter are placed in cells starting at \-\ and going across the
fir~t row or down the first column. You can choose the direction of entry hy using the
"GO- " and " GOI " keys. The menu key lahels for these keys indicate the current mode;
if a lahel has a white box in it, the cursor will move in the direction indicated by the
arrow in the lahel after each cell value is entered. Pressing either key toggles its hox on
or off; if on, then the hox in the other lahel is turned off.

• Choosing GO~ (as indicated by the white box in the key lahel) causes successive ele­
ments to he entered in the first row:

~IMATRlxl 2 3 IENTERI L~

-102-

Object Creation

• Selecting GO I causes the elements to be entered in the first column:

~IMATRlxl "GOI "

3·1

2 3 IENTERI LoY

1
2 .-,
.:,.

'I

4.6

• If you turn off both GO~ and GO I (by pressing the key that has the white box), then
the cursor docs not advance after a number is entered, and successive entries
overwrite the current cell unless you move the cell cursor to a new cell.

When you arc entering an array hy rows (GO~), you must specify the width of the array
hy pressing [IZ] after entering the last clement in the first row:

~IMATRlxl

The cursor has moved to the beginning of the second row. Now succeeding entries will
automatically "wrap" at the end of each row:

4 5 6 7 8 9 IENTERI D]

-103-

4.6 Object Creation

Similarly, if you are entering in columns (GO I), you must press [El to mark the end of
the first column. Then succeeding entries will automatically wrap to the next column
after each column is full.

You can change directions at any time. If you do so while the cursor is positioned in a
partially-completed row or column, the remainder of the row or column is automatically
filled with zeros. However, the white-hox active symhol does not change to reflect the
new direction choice until you actually enter a new cell value.

The HP 4/\ rem em hers the GO~ /GO I mode between MatrixWriter settings so that you
don't have to reset it to your preference each time you activate the MatrixWriter.

4.6.1.1 Vector Entry
By default, the MatrixWriter assumes that when you create an array consisting of only
one row, it is to be entered as a vector. When you press ~ IMATRlxl , you can observe
that the ",VECo", menu label contains a white square, which indicates that a one-row
array will he entered as a vector. If you press ",VECo", (which removes the white square
from the lahel) any time hefore the finallENTERI , a one-row array is entered as a 1 x II
matrix.

When you activate the MatrixWriter via [SZJ to edit an eXlstmg array, the VEC setting
automatically matches the array type, indicating vector type (white square) if the array is
a vector, or matrix type (no white square) otherwise. Thus it is a simple matter, for
example, to change a one-row matrix into a vector by pressing [SZJ ",VEC", IENTERI. Note
that the VEC setting is irrelevant if an array has two or more rows.

4.6.2 Editing Cells
You can change the contents of any MatrixWriter cell by moving the cursor there with
the arrow keys, then:

·104-

Object Creation 4.6

• To replace the current number, type a new command line and press IENTERI .

• To copy the current value to the command line for minor changes, press ~ EDIT~
Then make any desired changes in the command line text, and press IENTERI to
replace the old value ([Q[] cancels the change).

~ EDIT~ does not change the current menu; if you want the command line EDIT menu
(section 4.4), press @J]IEDITI. ~IMATRlxl restores the MatrixWriter menu.

4.6.2.1 Changing Array Dimensions
You can add a row or column to the current MatrixWriter array by placing the cursor in
the first empty row or column, and entering a value. Unless this happens to be the next
normal entry position (determined by GO- and GO I), zeros are automatically entered
into other cells as necessary to keep the array fully rectangular.

You can also add and delete columns and rows within the existing matrix by using the
keys in the second page of the MatrixWriter menu.

• 1+ Rowl inserts a row of zeros in the current cursor row, moving the current row and
below down by one row. Thus with

3·3

I+Rowl yields

2
5
8

-105-

3
6
9

'I

4.6 Object Creation

• ,,-ROW= removes the row containing the cursor, moving the contents of rows below
the cursor up by one row. From the preceding picture, = - ROW = yields

3·3 1 2
5
8

3
6
9

'I

, -1: 4
mmaEIl~lm[Jmmmm

• - +COL- inserts a new column of zeros at the cursor column, moving the contents of
columns at and to the right of the cursor to the right by one column.

• ,,-COL= deletes the column containing the cursor, moving the contents of columns to
the right of the cursor one column to the left.

4.6.2.2 Stack Access
The final two entries in the MatrixWriter menu provide for the exchange of numbers
between the MatrixWriter and the stack:

• ",-STK", enters the contents of the cursor cell onto the stack.

• '" tSTK", replaces the MatrixWriter display with the interactive stack (section 5.5). If
there is no command line active, the menu is the full interactive stack menu; other­
wise the menu contains only -ECHO-. In either case, you can use -ECHO- , to copy
a stack object to the MatrixWriter command line (since -ECHO- creates a command
line if one does not already exist, the interactive stack menu subsequently is res­
tricted only to "ECHO=). Either IENTERI or I ON I terminates the interactive stack and
returns to the MatrixWriter display.

4.7 The EquationWriter
The HP 28C was the first calculator to combine the computational flexibility of RPN
with the ability to represent and manipulate algebraic expressions in a readable form.
The HP 28's expression format resembles that common to most computer languages-­
expressions are shown as a line of text, using various precedence conventions to minim­
ize the use of parentheses. This linear fonnat is much easier to read than the equivalent
RPN representation, but still falls short of common written notation (see also section

-106-

Object Creation 4.7

2. I), in which precedence and other information is conveyed by vertical and horizontal
positioning and various special symbols that are not available in the linear format. The
H P.fl-l is the first handheld calculator to provide two-dimensional graphical entry and
display of expressions, by means of the Equation Writer.

It is fair to say at the outset that the EquationWriter strains the HP 48 processing sys­
tem (0 the limit. That system is limited to a modest performance by modern computer
standards for reasons of physical size and hattery life. Nevertheless, despite its lack of
blazing speed, the EquationWriter is an invaluable tool:

• The entry of constructs such as integrals is much easier in the EquationWriter than
using the linear format, simply because (he graphical format provides a visual guide to
(he entry of arguments; when you sec a picturc like this:

T +-;=;-, 2 1 f
.:::. 'n' . 0

you know that you should now enter the lower limit of an integral. In the linear format,
you sec

'T"2+ (1/{2*1T)) *J{ 0)'

without any help except your mcmory for choosing which among four arguments is to be
entered next.

• After you perform various symbolic calculations, the EquationWriter is very helpful for
viewing and understanding a result when the linear format is overwhelmed with
parentheses and precedence. The contrast between

-107-

4.7

and

speaks for itself .

(2\J

{ HOME}

2:
1:

J3·T

T
2

Object Creation

LN[k)dX

• For the interactive application of mathematical identity rules to rearrange and solve
expressions, the HP 48 RULES system using the EquationWriter is a distinct improve­
ment over HP 28 FORM, in which specification of a subexpression often is effectively
impossible because of the superabundance of parentheses. RULES is described in HP48
Insights Part II, as part of the discussion of symbolic algebra on the HP 48.

The EquationWriter is specifically not designed for editing expressions. It will not per­
mit operations that change the formal mathematical value of an expression, such as
inserting or deleting parentheses, substituting different functions, inserting or deleting
terms, etc., except by means of the IEDITI operation in the subexpression menu, which
activates the command line editor for a selected subexpression.

The subexpression (section 3.5.2.1) is a key concept in EquationWriter operation. A
subexpression is any portion of a mathematical expression that can stand alone; that is,
it can be treated as a complete expression by itself. Specifically, a subexpression con­
sists of a number, a name, or a function and its arguments. A number--real or
complex--is the simplest case; if you like, you can think of a number as a function that

-108·

1

I
l
I ,

Object Creation 4.7

takes no arguments and always returns the same value.

For exam pIe, consider the expression a + sin (b - c). Rewriting this in Polish notation
(section 2.1), you obtain + (a, sin (- (b,c))). The "outermost" subexpression is the
entire expression, consisting of the function + and its arguments a and sin (- (b,c)).
Each of the two arguments is a subexpression--the first is just the name a, the second is
the function sin and its argument - (b,c). The latter in turn is a subexpression consist­
ing of - and its arguments band c, and so on as you peel off the layers of parentheses.

4.7.1 The EquationWriter Display
While the EquationWriter is active, the text screen is dedicated to the expression pic­
ture. Menu keys retain their normal definitions and menus; however, keys that
correspond to RPN commands merely beep and do nothing. Similarly, the primary and
shifted keyboard keys are usable only if they make sense:

• Keys for HP 48 functions enter those functions into the expression in their graphical
form.

• Menu keys, ~!LAST MENU!, !NXT!, and ~ and ~!PREV! switch menus as usual.

• Alpha-shifted keys retain their usual actions.

• User mode is available, although the USER annunciator is not visible; however, only
keys defined with objects permitted in expressions are active.

• The cursor keys have special meanings that combine cursor "movement" with
mathematical function entry.

• [QJ performs a limited destructive backspace.

• [J enters a comma or semicolon, to separate the arguments of multi-argument func­
tions.

• 0 enters the = sign for an equation, or for the lower limit of a sum.

• !SPC! is used to enter any "required" characters--separators (comma or semicolon)
between arguments, = signs in 2: start assignments, etc.

• ~!EDIT! transfers the current EquationWriter expression to the command line.

• ~ !OFF! turns the HP48 off normally; pressing [Q[] restores the active Equation­
Writer display intact.

• ~ !PICTURE! switches off the menu and the cursor so that you can use the cursor
keys to scroll the current expression picture through the display. This permits view­
ing portions of the expression that have moved out of view during expression entry.
A second press of ~ !PICTURE! restores the menu and puts the cursor back at the

-109-

4.7 Object Creation

end of the expression for further entry.

• tSTOt captures the current expression picture as a graphics object on the stack. (This
is analogous to the tSTOt action in interactive plotting.)

• tEVALI (or [;±] t-NUMt) is equivalent to tENTERttEVALI (I-NUMI), for immediate entry
and evaluation of the current expression.

• ~ OIl toggles implied parentheses mode on and off (default on). See section
4.7.2.5.

• ~ EJ captures the current expression as a string object on the stack (section
4.7.5).

• ~ IRCLI takes an object from the stack and appends it to the current expression.
The object must be usable in an expression, or it may be a string, such as that cap­
tured by ~ EJ .

• I:::5lICLEARI clears the current expression without leaving the EquationWritcr.

EquationWriter executi()l1 is terminated by IENTERI, which closes all pending subexpres­
sions and enters the current expression onto the stack, where you will see it in linear
form. IEVALI and ~ I-NUMI act as shortcuts; either key performs IENTERI and then exe­
cutes its normal operation before returning to the standard environment. You can also
exit from the Equation Writer with []ill] , which returns to the standard environment but
abandons the current EquationWriter expression (if you activated the EquationWriter
with [3l] , the original level 1 object is preserved).

4.7.1.1 Invoking the EquationWriter
You may activate the EquationWriter in three ways:

• I:::5lIEQUATIONI starts the EquationWriter in entry mode with an initially blank screen,
for the entry of an entirely new expression.

• Pressing [3l] with an algebraic object or a unit object in level 1 activates the Equa­
tionWriter with that object as its current expression. The EquationWriter starts in
viewing mode, with no cursor, so that you can scroll the display around if necessary
to see all of the object. Pressing I ON I switches to the subexpression environment
(section 4.7.6); pressing ~ EXIT~ activates entry mode.

• ~GROB (section 10.3.2) specified with the 0 font argument creates a graphics object
containing the EquationWriter picture of an algebraic object or a unit object.

-110-

Object Creation 4.7

4.7.2 Basic Expression Entry
Entering an expression in the EquationWriter environment consists of "drawing" the
expression in a two-dimensional graphical form, in more-or-less the same order as the
expression is written by hand, working left-to-right. Object entry takes place at the cur­
sor, which is always at the end of the new expression. All three HP 48 character fonts
are used in building an expression picture, starting with the large font for the main line
of an expression, dropping to the medium font for exponents and for the limits of
integrals and sums, and finally to the small font for exponents of exponents, etc. The
cursor grows and shrinks also to match the current font size at the cursor.

To minimize memorization of arbitrary key sequences, the EquationWriter makes as
close a correspondence as possible between cursor movement and the hand motions you
make when writing an expression on paper. The crucial key is ITa , which terminates, or
closes, entry of a subexpression. The choice of ITa arises from a general model of enter­
ing expressions from left to right. The cursor is always at the right end during expres­
sion entry, so pressing ITa is taken to mean "go even farther right"--i.e. close the current
subexpression and start a new one. In some cases, such as when entering an exponent
or a numerator, the natural terminating motion is "down"; hence ['lJ is also allowed,
and is equivalent to ITa. Closing a subexpression means:

• entering a right parenthesis (this is the only way to do this);

• finishing an exponent;

• finishing a numerator or denominator;

• completing a square root or XROOT argument;

• completing any of the various arguments in a multi-argument function. In this case,
ITa enters an argument separator "," or "j" to separate parenthesized arguments, or
moves to the next argument location in structures such as integrals, sums, aGd I
(where).

When the cursor is in a position representing the end of several nested subexpressions,
you can use ~ ITa as a shortcut to complete all pending subexpressions. It is
equivalent to pressing ITa repeatedly until all subexpressions are closed and the cursor is
at the right end of the main entry line. Thus if you have entered

pressing ~ ITa closes both exponents and the fraction to

-111-

4.7 Object Creation

The space key plays a role similar to, but not quite the same as ITa. Ispcl (you can
also use ~ GJ) is used to separate the required arguments of a multi-argument func­
tion (not counting infix functions, where the function itself separates the arguments).
Like ITa , Ispcl enters an argument separator "," or ";" or moves to the next argument
location. However, you can not use Ispcl to terminate the final argument of any func­
tion; it will beep and display Invalid Syntax to indicate that no further arguments are
permitted. Another distinction between Ispcl and ITa is in their application to functions
of an indefinite number of arguments (including user-defined functions): Ispcl must be
used to separate the arguments, since ITa will close the subexpression. For example, if
you have entered

UDF(1D

then pressing Ispcl yields

UDF(1,D

ready for another argument, whereas ITa gives

UDF(1)D

Although there is some overlap between the actions of Ispcl and ITa , we recommend
that you usc Ispcl for separating successive arguments within parentheses, and ITa for
moving between physically separated argument locations.

You naturally can not leave any required argument location empty; if you press ITa in
such a situation, it just does nothing and leaves the cursor in place. You can not prop­
erly close a subexpression unless all of the required arguments of the function that
defines the sub expression are present. IENTERI in this case beeps and displays Incom­
plete Subexpression.

Upward motion when writing an expression can arise from a number of constructs, in
particular exponents and division numerators. The EquationWriter chooses the latter
for its US] action, since exponentiation is easily represented by the ~ key, and since
two keys are really needed for division--see section 4.7.2.4, below.

Finally, motion to the left implies a correction of already-entered symbols. The simplest
case is the erasure from the right represented by ~ (section 4.7.4). [gJ is directed to

-112-

~
j
!

Object Creation 4.7

more elaborate manipulations; it activates the subexpression environment (section 4.7.6).

4.7.2.1 Number Entry
Numbers arc entered into the EquationWriter in same manner as in the command line,
with certain exceptions that arise from the non-RPN context:

• ~ merely echoes a minus sign at the cursor and does not affect any sign to the
left of a number. You can use either ~ or Q to prefIx a negative quantity or for
subtraction.

• IEEXI just types an E at the cursor.

• You must separate the real and imaginary parts of a complex number with a comma
or a semicolon. After you enter the real part, Ispcl will enter the separator appropri­
ate for the current fraction mark mode.

4.7.2.2 Names and Prefix Functions
You can enter a global or a local name hy typing the name with alpha keys, or hy press­
ing a CST, VAR, or LIBRARY menu key corresponding to the name. The same method
applies to ordinary prefIx functions (functions with their arguments following within
parenthese~), including functions represented hy XLIB names, except that the Equation­
Writer is also sensitive to their definitions. This means that when you complete entering
a function name, hy pressing ~ , @2l OJ] , Ispcl , or another function key, the Equa­
tionWriter immediately checks the syntax, and adds a following left parenthesis if
needed. Furthermore, if the entry is an RPN command name, it is rejected with the
Invalid Syntax message.

Since the EquationWriter does not allow entry of spaces (ISpcl enters argument separa­
tors), you must enter those infIx functions with multi-character names, such as MOD,
AND, NOT, etc., by pressing a menu key or a user key for the function.

4.7.2.3 +, -, X

These infix operators (functions that appear between their arguments) appear in their
natural form, with the extension that the EquationWriter's graphics allow substitution of
the centered dot "." instead of the more obtrusive" *" of the linear format:

Although the HP48 docs not explicitly support implied multiplication (in order to pro­
vide for multi-character variable names), the EquationWriter will automatically insert a
multiply (".") whenever the syntax is suffIciently unambiguous to permit it:

-113-

4.7 Object Creation

• in front of an alpha character entered after a number: OJ lAJ L,~ 1·A 0

• between right and left parentheses: ...) ~[JJ]]] ...).(0

• in front of prefix functions (unless typed in with alpha keys): lAJlIDNJ L~ A·SIN(0

• in front of the divide bar:

• in front of square root:

You should need to use 0 only to separate objects entered with typed sequences
rather than with single-keystrokes, such as the products of numbers and names. If you
are uncertain of whether implied mUltiplication will happen, it is always acceptable to
press 0 directly.

4.7.2.4 Division
Symbolic fractions are displayed by the EquationWriter as a numerator above a divide
bar above a denominator, with the divide bar two pixels wider than the longer of the
numerator and the denominator (Ieft-to-right length). There arc two ways to enter a
fraction. The first is to enter the numerator, press c.;:] , then enter the denominator,
terminating the latter with U2J. For example,

OJ c.;:] []J [t] [TI U2J yields _1 - 0 .
2+3

With this method, which is derived from the ordinary infix divide used in the linear for­
mat, it is not necessary to enclose the denominator in parentheses. However, if the
numerator contains more than one object, it is necessary to enclose the numerator in
parentheses to indicate the extent of the numerator subexpression. Requiring numera­
tor parentheses violates the spirit of entering expressions as you write them, so an alter­
nate method is provided.

The second method uses [K] to mark the start of the numerator, following the motion of
a pencil moving up the paper as you start writing a numerator. Pressing [K] moves the
cursor up half a line and draws a divide bar under the cursor:

-114-

Object Creation 4.7

As you enter subsequent objects, the bar stretches under the new objects (the stretching
occurs when each object is terminated, not when individual letters or digits are typed):

1+2+3+ 4+5+60

You signal the end of the numerator by pressing CZJ or IT2-:l , whereupon the cursor
moves down to the empty denominator:

1+2+3+ 4+5+6
o

Now the divide bar stretches further when and if the denominator width exceeds that of
the numerator. IT2-:lterminates the denominator, redraws the fraction with the numerator
and denominator centered, and moves the cursor to the right end of the fraction.

The division initiated by [.2SJ actually corresponds to the prefIx function RATIO instead of
to f. This function is equivalent to / when executed, and is automatically converted to /
when you exit the EquationWriter with IENTERI . Because it offers no non­
EquationWriter functionality not provided by /, RATIO does not appear in any menus.
Unless you deliberately enter it in the command line, the only time you are likely to see
RATIO by that name is in strings created by the ~ ~ key from within the Equation­
Writer (section 4.7.5).

-115-

4.7 Object Creation

4.7.2.5 Exponents
You enter an exponent by pressing ~ immediately following the object or subexpres­
sion (the base) to be exponentiated. This causes the cursor to move up half a line, and
to reduce to the next-smaller font (unless already using the small font). If the base
expression is defined by a multi-argument function, parentheses are automatically added
around the expression if they are not already present. ~ or [S[] terminates the
exponent entry, moves the cursor down to the base line, and returns to the previous
font.

You must parenthesize multi-term base expressions, as you would in written notation. It
is not necessary to parenthesize the exponent, regardless of its structure. However, this
means that you must always use ~ or [S[] to terminate the exponent, which may appear
to be an inconvenience if you are entering, for example, a polynomial containing nothing
but single term exponents. For this reason, the EquationWriter allows you to disable
implicit parentheses.

In the normal operation of 8 , \I, and CY:J, subsequent entry adds objects to the
denominator, square root argument, and exponent subexpressions, respectively, as if
invisible parentheses surrounded the subexpression. If you press ~ OJ] , the implicit
parenthesization is disahled (Implicit () off is displayed), and entry of the suhexpression
following one of these operators is automatically terminated hy any subsequent function
key. Moreover, that is the only way to terminate (except IENTERI); pressing ~ has no
effect. This is convenient for entering polynomials: each exponent is completed hy entry
of the function that starts the next term. A second use of OJ] (Implicit () on) re­
enahles implicit parenthesization (which is always active upon entry to the Equation­
Writer).

4.7.3 Special Forms
In addition to basic expression entry described so far, using names, numbers, prefix
functions, and the infix functions +, -, X and -7, the EquationWriter provides special
forms for square root, xth-root (XROOT), integral (f), derivative (a), sum (I), and
where (I).

4.7.3.1 Square Root
Pressing [YJ displays a square root symbol with an overbar above the cursor: Yo. As
you enter the argument, the overbar stretches horizontally (in the manner of the divide
bar) and the leading \I stretches vertically, to match the growing argument. As usual,
~ or [S[] marks the end of argument entry, whereupon the overbar shrinks if necessary
to the length of the argument without the cursor, and the cursor moves two dot columns
to the right of the end of the overbar.

-116-

Object Creation 4.7

4.7.3.2 xth-Root
Whether XROOT is considered as a prefix or an infIx function in its written form is
ambiguous. In the EquationWriter, you press the XVy key before entering either argu­
ment. This moves the cursor up a half line, and reduces the font (but does not yet enter
the V symbol). You then enter the x argument; when you press ITa (or C2J or ISPCI) to
terminate the argument, the V symbol is drawn as well:

Now you enter the y argument, during which the V symbol stretches as for ordinary
square roots. Another ITa terminates the entire XROOT subexpression.

The fact that the x argument is written in the Equation Writer before the y argument
means that the linear format syntax for XROOT is XROOT(x,y). However, you should
note that the RPN syntax for XROOT is y x XROOT; x is entered after y. This makes

XROOT consistent with A, and more convenient for manual calculations, but it means
that XROOT is an (the only) exception to the usual HP 48 rule that the order of argu­
ments within parentheses is the same as the order in which they are entered for RPN
execution.

4.7.3.3 Derivative
Pressing W enters this form:

a
aD

The cursor is positioned at the differentiation variable name field. Keying 111 a name
terminated by ITa then yields

_a_co
aname

Now the cursor is positioned for entry of the expression to be differentiated; the
expression's entry is also terminated by ITa, which closes the parentheses.

4.7.3.4 Integral
~ IT] draws a large (about three times a character's height) integral sign, with the cur­
sor positioned at the lower integration limit:

-117-

Object Creation 4.7

expression.

4.7.3.6 Where
The function I (pronounced "where") is an infix function with one preceding argument
and an indefinite number of following arguments. Pressing ~ I ~ draws a vertical bar
and places the cursor at the bottom right of the bar:

A(X,Y) I D

At this point, you enter a series of one or more assignments of the form name = value,
separated by commas or semicolons. You can usc Ispcl to enter either = or the comma,
or you can usc @2l0 or @2lQ as appropriate. A typical entry looks like this:

A(X, Y) I X=2.Y=3 [1

Pressing U2:J after completing an assignment expression completes the I subexpression.

4.73.7 Units
In the EquationWriter, the underscore delimiter _ is treated as an infix function (section
2.1); no other special provision is required for units. You enter a unit object in the
usual form maJ;llitude_ullits, where the ullits part is a subexpression with exponents, mul­
tiplication signs, and divide bar displayed in the usual EquationWriter style. You can usc
various UNITS menu keys function as typing aids during unit entry.

In the entry of the unit part, the EquationWriter docs not attempt to prevent you from
entering otherwise valid subexpressions that contain functions not permitted in units. In
this respect the EquationWriter behaves the same as the command line for the case
where a unit object is entered within an algebraic object. No error is reported until the
resulting expression is evaluated.

4.7.4 Correcting Mistakes
The EquationWriter provides a destructive backspace operation (~) for correction of
ordinary wrong-key-press errors. The backspace works like that in the command line
for erasing digits and letters, but when you back up over a function or into any closed
subexpression, the display blanks while the picture is rebuilt (on HP 48S /SX versions
A-H, this process was painfully slow, but the EquationWriter was redesigned for new
versions and the HP48G/GX).

Note that the destructive backspace performed by ~ is not a suitable method for
structural revisions, such as inserting new terms and parentheses. For these reasons, the

-119-

4.7 Object Creation

command line editor is made available from within the EquationWriter. Pressing ~
IEDITI copics the entire current EquationWriter expression into the command line (this is
also true in RULES operation, where ~ IEDITI copies the selected subexpression to the
command line).' 'delimiters are automatically inserted around the command line
object to identify it as an algebraic type. Note, however that you can only edit a com­
plete expression; you must make temporary entries for any missing arguments in order
to start the command line edit (once the command line is active, you can replace the
dummy entries).

Normal command line facilities are available, including the interactive stack -ECHO- .

The entry mode is automatically set to ALG PRG. IENTERI returns the edited expression to
the EquationWriter; [ill[] cancels the edit and restores the original expression in the
EquationWriter.

4.7.5 Stack Access
In addition to the "back door" to the stack via '" tSTK", from the command line, the
EquationWriter provides more direct object exchange with the stack. For example, you
can capture the current EquationWriter picture by pressing ISTOI ; a graphics object
representing the picture is invisibly entered into levd l. The current expression does
not have to be complete, which is useful when you are trying to capture a series of
step-by-step pictures of EquationWriter operation.

You can also store the actual entry sequence that led to the current expression at any
time by pressing [2.>J co::::"J. The choice of this key arises from its a~sociation with
strings, since the key sequence is stored on the stack as a string. You can later usc the
string as a typing aid for reentering the same expression: pressing [2.>J IRCLI with such a
string in level 1 drops the string from the stack and appends it to the current expression
as if the string characters were typed in. When you observe an EquationWriter string
object on the stack, you will noticc that thc expression represented by the string follows
different precedence rules than used in ordinary algebraic objects; for example, the
expression

appears as

"(RATIO (1 ,2+ 3))"(4)"

in string form, but as

-120-

Object Creation 4.7

'(1/(2+3))"4'

in the linear form of an algebraic object. This difference makes it impractical for you to
create these strings other than from within the EquationWriter. Instead, you can usc
proper algebraic objects, since the EquationWriter ~ iRCLi can take any algebraic
object from the stack as well as an EquationWriter-generated string.

You may also sec EquationWriter strings on the stack when the HP48 runs out of
memory during Equation Writer entry, which causes the current expression to be saved
on the stack as a string. After you free some memory, you can restart the Equation­
Writer, and usc ~ iRCLI to recover the expression.

4.7.6 Subexpression Operations
During expression entry, the Equation Writer cursor is an open box that is always at the
cnd of the expression--the point at which object entry is taking place. Pressing 8ll
moves the cursor "back into" the expression, simultaneously activating the sUbcxprcssion
mcnu. The box cursor disappears, to be replaced by the sUbcxprcssion cursor, an
inverse-video highlight of an object, which you can move around the expression to select
different objects and subexpressions.

As discussed at the start of section 4.7, a subexpression is defined by a function and its
arguments, where we include the zero-argument cases of names, numbers, and symbolic
constants. All of the operations in the subexpression menu apply to the subexpression
selected by the cursor. As you move the cursor, it jumps from object to object, but at
any point you can expand the cursor to highlight an entire subexpression by pressing
~EXPR~. For example, with the cursor positioned like this:

((A-B) m((-O)) -(EoF)

pressing ~ EXPR ~ shows the subexpression defined by the object +:

-121-

4.7 Object Creation

(lA'SJ + (·0) -(Ef)

The exponentiation function" is "invisible" in the EquationWriter, since an exponent is
defined by its geometrical position. However, when you move the cursor between the

base and the exponent, the " pops into view so that you can select the corresponding
subexpression:

Then ~EXPR~ :

-,p;§: ·F
((R·B) +((·0);-

.
((A·S) +((·0))

All subexpression menu operations are applied to the selected subexpression. These

-122-

l
i

Object Creation 4.7

operations are defined as follows:

• - RULES - provides a set of identity operations that you may apply to the subexpres­
sion. We will defer a detailed discussion of RULES to Pan II, where we will
describe the broader topic of symbolic algebra on the HP 48.

• ~ EDIT~ copies the selected subexpression to the command line, where you can use
character editing to change it to any new subexpression (the only restriction is that
certain arguments, such as a differentiation or summation variable names, must
remain as names). IENTERI restores the EquationWriter picture, with the edited
sUbexpression replacing the original. You can also cancel the edit with [Qf[], leaving
the initial subexpression intact.

• ~ EXPR~ switches the cursor between highlighting an object and highlighting a subex­
pression. Pressing a cursor key to move the cursor always reverts to the object
highlight.

• ~SUB~ enters the selected sUbexpression onto the stack. When you leave the Equa­
tionWriter, any objects entered by ~SUB~ will appear starting in level 2, since the full
EquationWritcr expression object is returned to level 1 (this is also true for objects
entered by ISTOI or ~ ~ .

• ~REPL~ replaces the selected subexpression with an object taken from the stack. The
object is taken (and dropped) from level 1. if you entered the Equation Writer via CZJ
on an algebraic object or a unit object, that object is removed from the stack for the
duration of EquationWriter execution. Objects intended for REPL should therefore

start in level 2 (before CZJ). For example, to replace the A+B in 'SIN(A+B)A2'

with Y(C+D), start with the 'SIN(A+B)A2' in levell, and 'Y(C+D)' in level 2.
Then CZJ displays the sine expression:

SIN(A+8)20

[::g] four times highlights the +:

-123-

4,7

2
SIN(A;E)

Now ~REPL~ makes the replacement:

Object Creation

The highlight is now on the \/, since it is the function that defines the replacement
subexpression. You might also notice that the menu changes to the RULES menu
appropriate for \/; the REPL substitution is treated as an extension of RULES even
though it is not necessarily an identity operation, Any cursor movement restores the
sUbexpression menu.

• ~EXIT~ returns the EquationWriter to entry mode, with the box cursor at the end of
the expression.

-124-

5. The HP 48 Stack

The HP 48 stack is the center of all calculator operations. It is the plaee where the
great majority of commands find their arguments and return their results. It's also the
primary and most efficient means for commands and programs to transfer data and
instructions so that a series of calculations ean be linked together. In this chapter, we'll
describe the fundamental stack operations by which you can manipulate the objects on
the stack. We will use real numbers and names as example objects, but all of the stack
operations described here apply uniformly to any of the various RPL object types.
There are numerous practical examples of stack manipulations in the program examples
in later chapters.

The stack consists of series of numbered levels, each of which contains one object of any
type. The stack is always filled from the lowest level up, so that there are never any
empty levels between full ones. ENTER always moves new objects from the command
line into level 1, pushing previous staek objects up to higher levels. Most commands
remove their argument objects from the lowest levels, whereupon the objects in higher
levels drop down. The only exceptions are some of the stack manipulation commands,
which can move objects to or from arbitrary stack levels. There is no limit on the
number of objects or levels of the stack; you can enter as many objects as available
memory will permit.

The HP 48 provides an extensive set of stack manipulation commands, some per­
manently assigned to keys, and the rest contained in the stack command menu (@2]
ISTACKI). All of the stack menu operations are programmable commands, whieh means
that you can execute them by pressing the appropriate keys or by spelling their names
into the command line. Most stack operations can also be executed by using the interac­
tive stack, described in section 5.5.

If you have no previous experience with RPN calculators, a good way to get used to the
RPN stack is to view it at first as a "history" stack, which keeps a record of your calcu­
lations. That is, you can calculate in "algebraic" style by entering expressions sur­
rounded by , , delimiters (see section 3.8) and pressing IEVAU to perform the calcula­
tions. As the successive results pile up on the stack, you can experiment with the "feel"
of RPN by executing commands that combine the results into new values.

Table 5.1 lists the stack operations found on the keyboard and in the stack menu. The
individual operations are explained in subsequent sections. [Most HP 48 stack com­
mands are adapted from the FORTH computer language. Indeed, many key HP 48
features are based on FORTH, with its unlimited data and return stacks, RPN logic,
and structured programming.]

-125-

5.0 The HP 48 Stack

Table 5.1. HP 48 Stack Manipulations

Stack Clearing

Reordering Arguments

Copying Objects

Coullting Objects

Object Recovery

Command Action

DROP
DROP2
DROPN
CLEAR

SWAP
ROT
ROLL
ROLLD

DUP
OVER
PICK
DUPN

DEPTH

LASTARG

Discard the level 1 object
Discard the objects in levels 1 and 2
Discard the first n objects
Discard all stack objects

Exchange the objects in levels 1 and 2
Rotate the level 3 object to level 1
Rotate the level n object to level 1
Rotate the level 1 object to level n

Copy the level 1 object
Copy the level 2 object
Copy the level n object
Copy the first II objects

Count the number of objects on the stack

Return the arguments used by the last
command
Restore the stack to its state prior to
ENTER

5.1 Clearing the Stack
Perhaps the most common stack operation is "clearing" one or more objects, either to
discard unnecessary objects so that others are moved to lower levels, or just to clear the
decks for a new calculation. The latter is accomplished by CLEAR, which removes the
entire contents of the stack in a single operation. CLEAR is usually a manual operation;
a well-designed HP 48 program does not execute CLEAR because that might destroy
stack objects needed by a second program that called it.

There are three commands for removing a specific number of objects from the lowest­
numbered stack levels: DROP, DROP2, and DROPN. The basic command is DROP,
which removes the object in levell, and "drops" the remaining stack objects one level
to fill in the empty level. Each DROP discards another object, and the stack drops one
level.

-126-

The HP48 Stack

•
5.1

DROP2 and DROPN are equivalent to repeated execution of DROP. DROP2 does just
what its name implies: it removes two objects, from level 2 and levell, then drops the
remaining objects down two levels to fill in. DROPN drops n objects in addition to the
number n in level 1 (so actually n + 1 objects are dropped--see section 5.2.4 for a discus­
sion of stack depth parameters). Notice that although DROPN appears abbreviated as
~DRPN~ in menus, its correct name in a program is DROPN.

The need to drop objects arises when extraneous or no-longer-necessary objects occupy
the lowest stack levels. For example, if you take a vector apart with OBJ~, level 1 will
contain a list { 11 } specifying the number of elements in the vector. But if you are work­
ing with vectors of a particular size, the size list may be redundant information, in which
case you can drop the list and continue with operations on the elements.

5.2 Rearranging the Stack
Dropping objects from the stack is not always the appropriate action when you need
access to objects in higher-numbered stack levels--you may also need to preserve the
low-numbered objects. In such cases, you must employ stack rearrangement commands
to change the order of the objects.

5.2.1 Exchanging Two Arguments
The simplest form of stack rearrangement is the exchange of the positions of the objects
in levels 1 and 2, which is accomplished by SWAP. SWAP is used for switching the
arguments for a two-argument command, or more generally for changing the order in
which the levelland 2 objects may be used. SWAP is easy to illustrate:

A B SWAP J] B A.

5.2.2 Rolling the Stack
A stack "roll" is an exchange of stack positions involving objects in two or more stack
levels. One object is moved to or from level 1, and other objects move up or down
together to make room for it. The commands ROLL (roll up) and ROLLD (roll down)
provide for stack rolls in both directions, where "up" and "down" refer to the apparent
motion of the stack objects other than the level 1 object. You must specify the number
of stack levels you want to roll by placing a number n in level 1. Either command drops
the number from the stack, then rolls the first n of the remaining stack objects. For
example, if n = 4:

·127-

5.2

Level

4:
3:
2:
1 :

Before
t
z
y
x

Stack Contents
After 4 ROLL

z
y
x

The HP48 Stack

After 4 ROLLO
x

z
y

Although ROLL and ROLLO move several objects at once, the primary purpose of these
commands is still focused on level 1:

• II ROLL means "bring the nth level ohject to level 1." That is, ROLL retrieves a pre­
viously entered or computed object that has been pushed to higher stack stack levels
by subsequent entries .

• n ROLLO means "move the level 1 object to level n." ROLLO moves the level 1
ohject "behind" other ohjects that you want to use first.

SWAP and ROT (rotate) arc onc-step versions of ROLL. SWAP is equivalent to 2
ROLL; ROT is the same as 3 ROLL. a ROLL and 1 ROLL do nothing, but the latter is
still useful in program loops that usc ohjects from successive stack levels including Ievd
I.

5.2.3 Copying Stack Objects
Onc of the strengths of RPN calculators is their ahility to makc copies of an ohject on
thc stack, so that you can use it repeatedly without having to stop and store it in a vari­
able. The simplest example of this facility is the HP 48 command OUP, which makes a
copy of the object in level 1, pushing the original object to level 2, and all other stack
objects up one level. The HP 48 also lets you copy a block of stack objects with OUPN.
The sequence n OUPN, where n is a real integer, makes copies of the first II ohjects on
the stack. The order of the objects is preserved; for example

x Y Z 3 OUPN U" X Y Z X Y Z.

OUP2 is a one-command version of 2 OUPN:

X Y OUP2 u X Y X Y.

In some cases it is desirable to copy an object that is not in level 1, by hringing a copy
to level 1 while leaving the object in its original position relative to other objects. In the
HP48, this combination of ROLL, OUP, and ROLLO is provided by PICK, the general
purpose stack copy command. PICK works like ROLL, returning the nth level object to
level 1, but it leaves the original copy behind. The original therefore ends up in level

-128-

1

The HP48 Stack 5.2

n+ 1:

w X Y Z 4 PICK LT W X Y Z W.

OUP is the same as 1 PICK, and OVER is a one-step version of 2 PICK:

X Y OVER L~ X Y X.

Generally, you use PICK and ROLL when you are carrying out a complicated calculation
entirely with stack objects. When you need to use a certain object repeatedly, use PICK
to get each new copy of the object. For the final use of the object, use ROLL instead of
PICK; then you won't leave an unneeded copy around after the calculation is complcte.

5.2.4 How Many Stack Objects?
Several HP 48 stack commands require you to supply an argument that specifies how
many stack levels the command will affect. Because this argument is always taken from
level 1, you might be uncertain ahout what the argument should he--should you count
level 1, which contains the argument? The answer is no--always count the stack levels
you need heforc the count is entered into level I.

For example, suppose the stack looks like this:

4:
3:
2:
1 :

o
C
B
A

To roll 0 to levell, execute 4 ROLL. But notice that at the point when ROLL actually
executes, the stack is:

5:
4:
3:
2:
1 :

o
C
B
A
4

Here 0 is actually in level 5. But don't try to compensate for this by using 5 as the
argument to ROLL. ROLL removes its argument from the stack before it counts levels
for the roll. All other similar commands, such as OUPN, PICK, ROLLO, -LIST, etc.,
work the same way.

-129-

5.2 The HP48 Stack

DEPTH, which returns the number of objects currently on the stack, works in conjunc­
tion with this class of commands. The count returned by DEPTH does not include
itself--it counts the objects before the new count object is pushed onto the stack. (Every
time you execute DEPTH, the depth increases by one.) Thus DEPTH ROLL rolls the
entire stack, DEPTH ~LlST packs up all the stack objects into a list, etc.

5.3 Recovering Arguments
HP 48 commands characteristically remove their arguments from the stack. Occasion­
ally, it is useful to recover a copy of one or more of a command's arguments:

• To allow you to re-use the same argument(s) for a new command .

• To help you reverse the effect of an incorrect command, by applying the inverse of
the command to some combination of the result and the original arguments.

Traditional HP four-level RPN caleulators have a LASTX command that combines these
two purposes. On the HP 48, there arc two separate operations:

1. The capability of recovering an argument for reuse is provided by the last argu­
ments recovery system, whereby each command that uses stack arguments saves
copies of all of its arguments--up to five--in a reserved area of memory. No
built-in HP 48 command uses more than five arguments, except those like DUPN
or ~ARRY, which appear to usc an unlimited number of arguments. Such com­
mands arc considered for this purpose to usc only aile argument, the number or
list in level 1 that specifies the number of stack levels that are involved.

The arguments saved by the most recent command can be retricved by the com­
mand LASTARG (also called LAST, for compatibility with the HP28), which re­
enters all of the arguments onto the stack in their original order. Note that since
most HP 48 commands usc arguments, the last arguments objects change fre­
quently. Even simple stack rearrangements such as DROP and SWAP save their
arguments. Only commands like STD or HEX, that use no arguments at all, leave
the last arguments unchanged.

2. Manual recovery from incorrect commands is provided by the stack recovery sys­
tem. At the start of each ENTER, a copy of the entire stack is saved (see section
4.3.3) in a local memory (section 6.2). When all of the objects processed by
ENTER have completed execution, you can cancel their stack effects by pressing
~ IUNDOI. This discards the new stack and replaces it with the stack contents
saved by ENTER.

The objects saved for stack recovery and last argument recovery can consume a substan­
tial amount of memory if the objects are numerous or large. When you are working

-130-

l

--

The HP48 Stack 5.3

with objects that are comparable in size to available memory, such as adding large
arrays, the memory needed to save copies of objects for recovery can actually prevent
you from carrying out various operations. For this reason, the HP 48 gives you the
option of disabling either or both of these features (and also the command stack), by
means of the appropriate keys in the @JJ MODES (~FME) menu. You can also dis­
able argument recovery by setting flag - 55.

Two notes:

• Disabling last arguments prevents commands that error from returning their argu­
ments to the stack. This makes it harder to recover from an error, and also affects
the design of error traps (section 9.6) .

• If there is insufficient memory availahle to save the current stack as the recovery
stack, the HP 48 shows the error message No Room to Save Stack, and au/Omati­
cal~v disables stack recovery. This last step is necessary, since you would otherwise
be unable to do anything--including trying to free some memory. Any command
would fail, since the HP 48 tries to save the stack before executing the command.

LAST ARG can also be used to recover accidentally purged or replaced variables. See
section 6.1.6.

5.4 Stack Manipulations and Local Variables
The following example illustrates the use of several of the HP 48 stack commands. If
you execute the commands one at a time, you can observe how to copy, move, and com­
bine stack objects .

• Example. Write a program that computes the three values

P+A+B
P + B·F + A/F
P + B/F + A·F,

leaving the results on the stack. Assume that P is in level 4, A in level 3, B in level 2,
and F in level 1.

-131-

5.4

• Solution:

«

»

8

/
/

4 ROLLD 3 DUPN
ROLLD 7 PICK *
+ + 5 ROLLD 4
SWAP 4 ROLL *

3 DUPN
SWAP 7
PICK

+ +

The HP 48 Stack

+ +
PICK

This example illustrates the use of stack manipulation commands, but it does not neces­
sarily represent the best way to solve the problem. Keeping track of numerous objects
on the stack takes considerable care when you are writing or editing a program. In gen­
eral, manipulating objects on the stack in a purely RPN manner yields the most efficient
programs (see section 12.4). However, there are other programming techniques that are
easier and produce more legible programs. For example, you can store the initial and
intermediate values in global variables, then recall each to the stack by name as it is
needed in the calculations. Better yet, you can avoid cluttering up user memory with a
lot of variables (which you mayor may not need after the program is finished) by using
local variables.

With local variables, the solution to the example problem is

« p a b f
« 'p+a+b' EVAL

'p+b*f+a/f' EVAL
'P+ b/f+a*f' EVAL

»
»

~ p a b f takes the four initial values off the stack and assigns them to local variables p,
a, b, and f (here we are using the convention of lower-case characters for local names).
The rest of the program computes the three results, then discards the local variables.
The obvious advantage of this method is that you can write the program "instantly,"
since the program so closely resembles the written form of the expressions you are try­
ing to compute. The use of local variables is explored in detail in sections 8.5 and 9.7.

5.5 The Interactive Stack
HP48 stack commands are available either on the keyboard (DROP, SWAP, DUP, and
CLEAR) or in the stack menu. But for manual operations, the HP 48 also provides the

-132-

The HP48 Stack 5.5

interactive stack environment, in which you can apply stack commands to objects in vari­
ous levels by selecting the objects with a pointer rather than a stack level argument.
The interactive stack also lets you view or edit any stack object, copy objects to the com­
mand line, combine objects into a list, and discard objects from the stack.

The interactive stack is activated by pressing [3J when there is no command line active.
The interactive stack menu appears, and the colon in the level 1 indicator 1: changes to
a triangle pointer, to show that the level 1 object is currently selected:

{ HOME}

4: 1234
3: (5 6)
2: 'X+Y~21
1~ [1 2 3]
mmJlmDmmllEDllE!!llmHI

NotL: that the stack is rL:displayed in single-line format, so that four stack kvds can
appL:ar in the display. Pressing [3J moves the selector to level 2; pressing thL: kL:Y
repL:atedly moves the arrow to the top of the stack display and then begins scrolling
objects from higher levels into the window. ~ [3J moves up four levels; ~ [3J moves
the arrow to the highest stack level. You can also move the arrow down using [2J , ~
[2J, and ~[2J.

"Selecting" an object consists of moving the arrow to point at it; the stack level number
of the selected object is then an implicit argument for the stack operations that appear
in the menu. For example, to move the object in level 5 to level 1, you press [ZSJ five
times (or [ZSJ ~[ZSJ), then press ~ROLL~. This is equivalent to executing 5 ROLL, but
it is easier because the very act of moving the pointer up to level 5 to see where the
object is not only automatically activates a menu containing ROLL, but also saves you
from having to enter the 5.

The interactive stack menu operations ~PICK~ , ~ROLL~ , =ROLLD= , ~-LlST~ , ~DUPN~ ,

and ~DRPN~ (DROPN) are self-explanatory, since they derive from the corresponding
stack commands (section 5.2), using a stack level argument provided implicitly by the
stack pointer. The remaining four operations in the interactive stack menu do not have
command equivalents:

• -ECHO- is for copying an object to the command line when you want a new copy of
the object, either to modify to make a new object, or to embed in some command

-133-

5.5 The HP48 Stack

line sequence. It differs from EDIT in that the new command line object does not
replace the original stack object.

• ~VIEW~ activates the appropriate viewer (section 4.4.1) for the selected object.

• ~KEEP~ discards all stack objects in levels above the selected object. It is intended
for manual stack cleanup, and has no programmable equivalent since generally it is
not a good idea for a program to discard objects that might have been on the stack
before it began execution. It is, however, easy to write a program to replicate
illill --see section 5.6.1.

• - LEVEL- returns the selected level number to level (pushing current stack objects
to the next higher stack level).

In addition to the interactive menu keys, two other keys arc active:

• ~ removes the selected object from the stack. It is equivalent to n ROLL DROP.

• t5J IEDITI (you can omit the @J]) edits the selected object in the command line (in
program entry mode), and returns it to its original level when you press IENTERI .

5.6 Managing the Unlimited Stack
If you have not previously used an RPN calculator, you should find that the HP 4S's
unlimited stack of objects is a straightforward implementation of RPN principles. How­
ever, if you are used to a four-level HP 41 style stack, there are several general aspects
of the usc of the HP 48 stack that will require some adjustment. The hardest part,
perhaps, may he changing keystroke and programming practices that you have
developed to use the advantages and to overcome the disadvantages of a four-level
stack. In the following sections, we will outline some suggestions for optimum use of
the unlimited stack.

5.6.1 Stack Housekeeping
An important advantage of an unlimited stack is that objects are never lost by heing
pushed off the end of the stack when a new object is entered. This is also a mild
disadvantage--if you don't clear objects from the stack when you're through with them,
more and more objects will pile up. This not only wastes memory, but causes the HP 48
to pause more frequently for memory packing (section 12.9.1). It can also be distracting
to see old objects appear in the display when you've long since forgotten their purpose.

A general recommendation for HP 48 stack management is to clean up the stack after a
calculation is complete. By all means pile up as much as you want on the stack while
you are working through a problem--that is its purpose. But when you're finished,
empty the stack. You can do this either at the beginning or the end of each calculation.

-134-

The HP 48 Stack 5.6

We recommend the latter, sincc at that point you will best remember what each object
is, and whether it's all right to throw it away.

"Clean up the stack" doesn't always mean to empty the stack with CLEAR. You may
very well want to keep certain objects, either leaving them on the stack or storing them
in variables. Notice that STO rcmoves the objcct being stored from the stack, reducing
the number of objects on the stack.

The interactive stack is particularly useful for selective stack cleanup:

• To discard a single object, select it and press @] .

• To discard a block of objects at the low-numbered end of the stack, select the
highest -numbered object to discard and press ~ DRPN ~ .

• To discard a block of objects at the high-numbered end of the stack, select thc
highest-numbered object that you want to keep, and press ",KEEP~ .

• To discard a block of objects in the middle of the stack, select the lowe~t-numhered
ohject to discard, and press ~ repeatedly.

You can write programs that perform the different stack removal operations, although
their practical usc in properly structured programs is limited. KEEP is a program form
of the interactive stack ~KEEP", operation; it discards all ohjects after the first Il, where Il
is specified in level 1. For example,

ABC D E 2 KEEP U' D E

(This is our first example of a named program; you may wish to refer to the description
of the program listing format in section 1.3.)

KEEP Keep N Objects A24D

... levell I
objects n 01 n objects

« -LIST Combine n objects in a list.

- keep Save the list in a local variable.

« CLEAR Clear the stack.

keep OBJ- DROP Put the saved objects back on the stack.

»

»

MNDROP discards an objects from levels m through 11, where m-::;l1. For example,

·135-

5.6 The HP 48 Stack

ABC D E 2 4 MNDROP n A E

MNDROP DROP m through n 13BF

level n+2 level 2 level] I level m-n ... level]

objectn ... m n u- objectm_l objectl

« SWAP DUP - n Save n.
« - 1 + 1 SWAP Set up to repeat n - m +] times.

START n ROLL DROP Drop one object.

NEXT Repeat.
»

»

Occasionally you may need to interrupt one ongoing manual calculation in order to per­
form another, and wish to resume the suspended work later. In this case it is not
appropriate to clear the stack with CLEAR to provide an empty stack for the new calcu­
lation. You could take the trouble to save each object in a variable, hut this is tedious,
and makes it hard to reconstruct the stack order of the objects. A better approach is to
preserve the entire stack in a single variahle hy comhining the stack ohjects into a list.
From the keyboard, you can use the interactive stack; the keystrokes arc

IENTERI.

Then you can store the list into a variable named OLDST (for example) by typing
'OLDST' ISIOI. The stack is now cleared for another calculation. After completing any
number of subsequent operations, you can restore the old stack by executing

OLDST OBJ~ DROP.

The DROP removes the object count returned by OBJ~.

In a program, a local variable (section 9.7) is ideal to save the stack contents:

DEPTH -LIST - keep
«

keep OBJ- DROP

Save the stack in local vdriable keep.
Any program steps here ...
Restore the old stack.

-136-

1

The HP48 Stack 5.6

5.6.2 A Really Empty Stack
An important property of the HP48 stack not shared by an HP41-style stack is its abil­
ity to be empty. That is, when you clear the stack with DROP or CLEAR, there's nothing
left. If you try to execute a eommand that requires arguments, you'll get an outright
error--Too Few Arguments. The HP 48 makes no attempt to supply default arguments.

You can turn this property to advantage. The following sequence adds a series of
numbers on the stack, no matter how many there are:

WHILE DEPTH > REPEAT + END 'TOTAL" ~TAG

The sequence is an indefinite loop (section 9.5.2) that keeps adding (REPEAT +) as
long as there is more than one object on the stack (WHILE DEPTH 1 », then quits,
leaving the labeled total in level 1. This routine is useful when you must add a column
of numbers--you can enter all of the numbers onto the stack, use the interactive stack to
review the entries, then perform all of the additions at once. Notice that if an empty
stack were treated as if it were filled with zeros, there would be no way for the program
to know when to stop adding.

5.6.3 Disappearing Arguments
The HP 48 itself takes some steps to insure that unnecessary objects don't pile up on the
stack. In particular, most commands that use stack arguments remove those arguments
from the stack. You shouldn't find this surprising; for example, you wouldn't expect the
sequence 1 2 + to leave the 1 and the 2 on the stack as well as the answer 3. But it
may be a little disconcerting the first time you use STO on the HP 48, to see that the
object you just stored disappears from the stack.

If commands did not remove their arguments from the stack, then you would have to
take the trouble to drop them when you no longer need them. On the other hand, since
HP 48 commands do remove their arguments, you must remember to duplicate them
before executing the commands on those occasions when you want to reuse the argu­
ments. The HP 48 chooses this approach for these reasons:

• Consistency with mathematical functions. You never want math functions to leave
their arguments on the stack--otherwise, the whole RPN calculation sequence would
be disrupted.

• Stack "discipline." The fewer objects that are on the stack, the easier it is to keep
track of what they are.

• Efficiency. It's easier to duplicate or retrieve a lost argument than it is to get rid of
an unwanted one.

·137-

5.6 The HP48 Stack

To illustrate the last point, consider obtaining a substring from a string:

"ABCDEFG" 3 4 SUB L~ "CD".

This sequence returns only the result string "CD"; the original string "ABCDEFG", and
the 3 and 4 that specify the substring are discarded. If you want to keep the original
string, add a DUP after the original string object:

"ABCDEFG" DUP 3 4 SUB n "ABCDEFG" "CD".

If SUB left its arguments on the stack, the original sequence would yield a final stack
like this:

4: "ABCDEFG"
3: 3
2: 4
1: "CD"

In that case, to leave only the result on the stack, you would have to add 4 ROLLD 3
DROPN to the sequence. If you only want the two strings, you would have to add ROT
ROT DROP2. As we stated, either of these is more complicated than adding a DUP to
the start of the sequence.

When you use STO to preserve an intermediate result in the middle of a calculation,
you may prefer to keep the result on the stack so that you can continue the calculation.
In this case, just execute DUP (press IENTERI if you're performing manual calculations)
before you enter the variable name for the STO. If you forget, the stored object is
always available by name in the VAR menu.

5.7 Design Insights
An alternative (and more accurate) picture of the HP 48 stack is that the stack consists
of the stack objects themselves, rather than a set of levels that mayor may not contain
objects. The picture conveyed by the HP 48 display is slightly misleading in that it sug­
gests that the stack levels with their numbers actually exist in memory, including the
empty levels that are just waiting to have objects put in them. (This picture is literally
correct in four-level RPN calculators.) In fact, the stack consists of the stack objects
placed adjacent to each other in memory, a starting memory location, and a memory
pointer. The pointer points to the location where the next stack object will be placed.
If the pointer points to the start, the stack is empty. When an object is placed on an
empty stack, it is stored at the starting location, and the stack pointer is adjusted to
point just past the object. As additional objects are added, they are placed next to the

-138-

The HP 48 Stack 5.7

last -entered object, and the pointer is adjusted. You can picture the stack as growing
like this:

Empty One Two Three
Object Objects Objects

ONE ONE ONE
[) TWO TWO

[) THREE
[)

The key idea here is that when objects are added to and deleted from the stack, the
remainder of the stack does not move (as you might think from the 48 display, since
entering an object shows the initial objects moving up the display, and dropping objects
shows objects moving down). Thus it takes no more time to add an object to a stack of
1000 objects than it docs to an empty stack. Similarly, when you execute any stack rear­
rangement, the only movement takes place among the objects involved in the rearrange­
ment.

In the diagram we show the stack growing downwards, as in the HP 48 display. Descrip­
tions of stack-oriented computer languages usually show the opposite picturc, with the
"top" of a stack being the most-recently entered object. HP RPN calculator manuals
have always shown level 1 (the x-register) at the visual "bottom" of any stack pictures.
The HP 28C was the first calculator in which more than one level was visible at a time;
it displays level 1 at the bottom of its display. The HP 48 continues this model, which is
sensible since when you perform a simple operation like addition, the numbers appear
on the stack the same way they would appear on paper, with the first-entered number
above the second. To avoid confusion, however, we will not refer to the "top" or the
"bottom" of the stack, referring instead to specific stack object/level numbers.

The stack-of-objects model needs further modification to correspond exactly to the
HP 48 internal design. The real HP 48 stack is a stack of the memory addresses of the
visible stack objects rather than the object themselves. The objects may be in any of a
number of places--in user memory, in the built-in ROM, in plug-in RAM or ROM, or,
if not in one of these places, in a temporary object memory. All HP 48 operations that
deal with the stack "know" that the objects are only present indirectly on the stack.
Because of this consistent system design, you can deal with stack objects as if they were
literally in a stack without any concern about the indirection.

An understanding of the internal stack design can, however, provide some insights into
using the system efficiently, such as why stack manipulations are very fast. The

-139-

5.7 The HP 48 Stack

addresses on the stack are all the same size--2.5 bytes--so that copying them, counting
through them, etc. involves very simple operations that can be encoded in very efficient
assembly language. For example, DUP has only to duplicate the 2.5 byte address of the
level 1 object--it does not have to copy the object itself--and add 2.5 to the stack end
pointer. (This also means that copying an object with DUP only uses 2.5 bytes of
memory.) Also, finding an object on the stack is fast; to find the level one object, the
HP 48 just reads the address indicated by the stack pointer. By contrast, to find an
object stored in a variable from the variable's name, the calculator must search through
user memory until it finds a variable with the right name, which can require many
memory reads and comparisons.

The stack-of-addresses model implies that you can make any number of copies of an
object at a memory cost of only 2.5 bytes per copy. When you execute a program that
contains an explicit object that goes onto the stack, it still only costs 2.5 bytes for the
object, because the program literally contains the object. The resulting stack address
points inside the program, to the point in the program where the object is defined.
There is a catch here: if you purge the program while the object it entel ed is still on the
stack, the HP 48 copies the entire program to temporary object memory where it
remains until you finally drop the stack object. The memory occupied by the program is
only reclaimed when the ohject is dropped, not when the program is purged (see also
section 11.6).

Other conseq uences of the RPL stack design are discussed in sections 11.6 and 12.9.1.
The complete logical description of the internal design of RPL would constitute a book
by itself. Fortunately, you can generally use the HP 48 and write quite elaborate pro­
grams without concern about the details of its internal design.

-140-

6. Storing Objects

The HP 48 stack can contain an indefinite number of objects of any type; if you so
desired, you could execute most HP 48 operations using only the stack. However, this
becomes impractical once you are dealing with more than a few objects. Accordingly
the HP 48 provides several areas in memory where you can save objects for later use.
All of these areas have the common property of associating a name with an object, and
all access to any stored object is performed by means of its name.

Traditional calculators store data in fixed memory locations called registers, which are
identified by a registcr numbcr or letter. These calculators' programs are stored
separately from the data registers, but the programs too are commonly specified by a
number or letter; some advanced calculators permit multi-character program names.
Computers, on the othcr hand, store both programs and data in files, which have multi­
character names and arc not generally limitcd in size or number. The HP 48 combines
clements of the memory management of both traditional calculators and computers, but
is generally closer in spirit to the latter. The named object is the closest analog in the
HP 48 to a computer file or a calculator register. A named object is an object that has
been stored in memory elsewhere from the stack, along with a text name that provides
identification of and access to the object.

In many respects it is appropriate to call named objects files, especially global variablcs,
port variables, and library commands, but there are some differences between typical
computer files and HP 48 named objects:

• HP 48 objects can exist independently of their names, that is, objects can be created,
manipulated, changed, and executed without ever being named. Common computer
operating systems, without any user-accessible structure analogous to the HP 48
stack, require you to create and store everything as named files.

• All HP 48 objects are automatically executable, either directly or by name when they
are stored. Computer files must be designated as executable, such as executable
MS-DOS files named with the extensions .EXE, .COM, or .BAT. Those that are
not executable are intended only for use as data, such as text files.

• The name associated with an HP 48 object does not "type" the object in any way, as
does the extension on computer file names. Any type of object can have any name.
You may choose names for objects that suggest the objects' uses, but this does not
affect the execution properties of the objects.

• Access to HP 48 stored objects is provided by name objects (section 3.6). This fact is
central to the HP 48's symbolic capabilities--you can operate on a name in an
expression or otherwise, whether or not there is a value associated with the name at

-141-

6.0 Storing Objects

the time of the operation .

• HP 48 named objects do not record their times of creation or modification.

The methods and organization of object storage on the HP 48 are quite straightforward
in practice, but can be a little convoluted to explain in the abstract. Therefore we will
develop the theme by means of a continuous example that runs through this chapter.
We will start with a hypothetical "empty" calculator and start to fill it with stored
objects, explaining the principles as they are introduced in the example. If you want to
follow along with the example, it is not necessary to clear your HP 48's memory--just
allow for the differences in some of the screen displays that arise from the extra vari­
ables present in your calculator.

6.1 Global Variables
Imagine now that you want to enter the real number 123 and store it away for future
usc. This is accomplished by using the command STO to create a global variable that
both stores the number and gives it a name. STO evidently requires two arguments: the
object to be stored (level 2), and a name (level 1). The name in this case is represented
hy a global !lame object (section 3.6.1):

123 ' ABC' STO

This sequence enters the number 123 and stores it with the name ABC. The quotes' ,
surrounding the name ensure that the name object itself is entered on the stack, rather
than executing the name (section 3.7). You should notice that both 123 and' ABC' are
removed from the stack by STO; to leave a copy of the 123 on the stack, you should
copy it first:

123 DUP 'ABC' STO

To see where the 123 has gone, press the VAR key:

{ HOME}

4:
3:
2:
1 : 1[01 ____ _

-142-

I

Storing Objects 6.1

You are seeing the VAR menu, which is an automatic catalog of all global variables that
currently exist. In this example, there is only one variable, ABC, which appears as the
label of the leftmost menu key. If you press that menu key, the number 123 is returned
to the stack, which demonstrates the fundamental behavior of VAR menu keys:

• Pressing an unshifted VAR menu key executes the global name displayed on the key
label.

According to the principles of global name execution described in section 3.6.1, execut­
ing a global name executes the object stored with that name, which in this example is
the number 123. When the stored object is a program, a name or a directory, you may
want to recall the object without executing it, which leads to a second property of the
VAR menu:

• Pressing a right-shifted VAR menu key recalls the object stored in the corresponding
global variable.

Thus, pressing ~ ~ABC~ is equivalent to executing' ABC' RCL. For objects other than
programs, names, and directories, executing the object is the same as recalling it to the
stack, so the right-shifted and unshifted VAR menu keys have the same effect. When
you are unsure of a stored object's type, and want to recall it without executing it, you
should use the right-shifted menu key. Notc that in program entry modc (section 4.3.1),
~~ABC~ enters' ABC' RCL into the command line.

For symmetry, the left-shifted VAR menu keys arc also active:

• Pressing a left-shifted VAR menu key stores the object in level 1 in the correspond­
ing global variable.

456 @::i] ~ABC", is equivalent to 456 'ABC' STO. When STO is executed with the name
of an already existing variable, the existing contents of the variable are replaced with the
object in level 1. In program entry mode, @JJ ~ABC ~ enters 'ABC' 5TO.

The action of a left-shifted menu key as a shortcut for STO has the obvious disadvan­
tage that it is easy to overwrite the contents of a variable accidentally, when you press
the left shift instead of the right or forget that the left shift was left active from some
previous incomplete operation. To help you remember which shift is which, observe
that shifted menu key operations roughly match those of the shifted ISTOI key: ~ ISTOI
performs RCL, like the right-shifted menu key; and @::i] ISTOI executes DEFINE (section
6.1.1), which is a special type of storing. Also, if you do perform an unwanted store by
pressing a left-shifted menu key, you can undo the operation by immediately pressing

-143·

6.1 Storing Objects

(see section 6.1.6).

The properties of the VAR menu keys described above apply only to immediate-execute
entry mode; in algebraic (ALG annunciator) or program (PRG) entry modes, an unshifted
menu key merely echoes the key label name to the command line, and the shifted menu
keys are inactive.

Now create a second variable DEF:

456 'DEF' STO

The VAR menu now looks like this:

{ HOME}

4:
3:
2:
1 : D3JIEIDI ___ _

The newer variable DEF appears on the left-most menu key, with ABC moved one posi­
tion to the right. In general, as each new variable is created, its menu entry takes the
first menu position. This ensures that the most recently created entries are the most
accessible in the menu, but it also means that menu entries move around as variables
are created or deleted (which can trip you up if you are pressing keys quickly, since the
display showing the menu positions is not updated until any type-ahead keystrokes are
processed). The command ORDER gives you control of the order of menu keys in the
VAR menu. ORDER rearranges the menu to match the order of names in a list. For
example, to put ABC on the first key label in our example menu, execute

{ABC DEF} ORDER.

Actually, the DEF entry in the list is superfluous in this case. ORDER moves the vari­
ables named in the list to the start of the VAR menu in the order specified, leaving any
other variables in their current order, following the final entry in the list.

The review operation, activated by ~ IVIEWI when there is no command line, is a handy

·144-

Storing Objects 6.1

way to make a quick check of the contents of the variables listed on one page of the
VAR menu. Each variable name is displayed on one line, followed by a colon plus as
much of the corresponding stored object as will fit on the line:

ABC:
DEF:

123
456

IJDIDDI ___ _

You can also catalog global variables using VARS and TVARS, described in section 6.1.4.

6.1.1 DEFINE
When the object to be stored in a global variable is an object that is permitted within an
algebraic expression, DEFINE (LSJ IOEFI) provides a convenient alternative to STO.
DEFINE takes an equation of the form 'name = expression , as its single argument, and
stores the object expression in a global variable /lame. If expression consists of a single
real or complex number, name or unit object, the stored object will be of that type. For
more complicated expressions, the stored object depends on numeric execution mode
(section 3.5.6.2):

• With flag - 3 clear (symbolic execution), expression is stored as an unevaluated alge­
braic expression. 'A=1 +2' DEFINE stores '1 +2' in the global variable A .

• With flag - 3 set (numeric execution), expression is evaluated numerically (as by
~NUM), and the result object is stored. 'A= 1 +2' DEFINE stores 3 in the global
variable A.

Notice that numeric-mode DEFINE resembles a postfix form of the BASIC language
LET, providing a simple way of redefining a variable in terms of its current value. For
example, 'X=X+1' DEFINE adds 1 to the current value of X, which would be accom­
plished in BASIC with LET X=X+1 (or usually just X=X+1, with implied LET). (Don't
do this with flag - 3 clear, since that leads to a circular definition--see section 3.6.l).

DEFINE can also be used to create user-defined functions, which are described in section
8.5.

-145-

6.1 Storing Objects

6.1.2 Directories
The HP48 allows you to create any number of variables like ABC and DEF. When you
have more than six variables, the VAR menu shows a page of six at time; INXTI (next page)
and @2lIPREVI (previous page) allow you to page forward and backward through the
menu. However, the menu becomes cumbersome once you have more than a few pages
of six variables. For this reason the HP 48 provides directories, which allow you to
organize logical groups of variables.

The variables ABC and DEF in our example so far together constitute the home direc­
tory, a permanent directory that serves as the "root" of the HP 48's global variable
organization. Like any directory, the home directory can be empty, as it is following a
memory reset, or it can contain any number of variables. You can picture the current
home directory like this:

ABC DEF

123 456

Each box represents a variable, showing its name and contents. The variables are
shown in the same order that they are presented in the VAR menu.

The HP 4..,\ allows you to create variables within the home directory that themselves con­
tain directories--groups of additional variables. This process, which can be repeated
indefinitely within the new directories and their variables, allows you to organize user
mcmory--the complete collection of global variables--into a hierarchical structure. To
see how this works, create a directory variable DIR1:

'DIR1' @2lIMEMORVI ~DIR~ =CRDIR=

Press IVARI to show the VAR menu again:

{ HOME}

4:
3:
2:
1 : 1'mD1GDI1:mI __ _

-146-

Storing Objects 6.1

A menu label has appeared for DIR1, indicating that CRDIR (CReate DIRectory) has
added a variable DIR1 in the home directory. The little "tab" above the label, which
makes it resemble a file folder, indicates that the corresponding variable is a directory.
Initially, the directory contains no variables. Now press '" DIR1 '" :

{ HOME DIFil }

4:
3:
2:
1 : ------

Executing a dircctory by name causes that directory to becomc the current directory,
which by definition is the directory whose variables are displayed in the VAR menu.
Since the directory DIR1 is empty, the VAR menu shows only blank menu keys at this
point. Notice also that the list { HOME DIR1 } is now displayed in the second line of
the status display. This list, called the current path, is the sequence of directories that
leads to the current directory. You can return this list as a stack object by exccuting
PATH (in the same mcnu as CRDIR); if you later change current dircctories, you can
evaluate the list (EVAL) to return to the directory specified by the list. (In subsequent
discussions, we will simplify descriptions by using expressions like "switch to" or "go to"
rather than "make current." Thus "switch to the DIR1 directory" means "make DIR1
the current directory.")

Any variables that you create while a particular directory is current become part of that
directory. For example, create two new variables:

-123 'ABC1' ISTOI -456 'DEF1' ISTOI.

The new variables appcar in the VAR menu:

{ HOME DIFil }

4:
3:
2:
1 : 1mJ1ilm ___ _

-147-

6.1 Storing Objects

Meanwhile, what has become of the variables ABC and DEF created at the start of this
exercise? They are still available for execution or recall, but are not visible in the menu.
For example, if you execute ABC IENTERI , the value 123 is returned. This illustrates the
essential property of HP 48 name resolution: when the HP 48 searches for ("resolves") a
global name, it first searches the current directory. If it can not find a variable with that
name there, it proceeds to search the parent of the current directory--the directory that
contains the current directory as a variable. The search continues through the parent of
the parent, and so on to the home directory if necessary.

In the current example, user memory is now structured like this:

DIR1 ABC DEF

DIR ... 123 456

\

\

DEF1 ABC1

-456 -123

The figure shows the contents of the DIR1 directory below the home directory. This
matches the HP 48 terminology in which DIR1 is considered as a subdirectory of the
home directory, and where the command UPDIR (tSl[]jfJ) is named to suggest moving
upwards through the user memory structure. UPDIR goes to (makes current) the parent
of the current directory; HOME is equivalent to executing UPDIR repeatedly until the
home directory is reached.

A key principle of HP 48 name resolution (see section 6.5) is that global variable
searches always proceed upwards through the directory tree, but never downwards. In
the current example, if you execute HOME or UPDIR to return to the home directory,
then executing 'ABC1' RCL returns the Undefined Name error since the search for
ABC1 does not include the DIR1 subdirectory. (The error message is somewhat inaccu­
rate, since it is the variable that is not "defined", rather than the name.)

The HP 48 does permit you to have any number of variables with the same name, as
long as there is only one such variable in any directory. For example, execute:

-148-

1

Storing Objects

~IHOMEI ~DIRE 987 'ABC' ISTOI

~IHOMEI 'DIR2' [<lJ]IMEMORVI ~DIR~ ~CRDIR-

IVARI ~DIR2~ 654 'ABC' ISTOI

Now user memory looks like this:

DIR2

DIR ...

I I

I I

~
l~

DIR1

DIR ...

I ,

, ,

ABC DEF

123 456

-

ABC DEF1

987 -456

-
ABC1

-123

Executing ABC returns a different result when each directory is current:

ABC
[<lJ] [JJE]
~DlR1 ~

ABC
ABC

654
123
987.

6.1

The variable searches performed by commands that change the contents of variables,
such as STO, PURGE, etc., are limited to the current directory. This provides a meas­
ure of protection against the accidental destruction of variables you can't see in the VAR
menu.

6.1.2.1 Organizing User Memory
The properties of directories outlined in the preceding sections suggest the following
guidelines for organizing user memory:

• The home directory should contain utility variables that are needed in a variety of
applications, plus directories that contain groups of variables associated with indivi­
dual applications.

-149-

6.1 Storing Objects

• Make a separate directory for each application program or set of programs, to avoid
variable name conflicts and to keep the individual directories short.

• Use ORDER to arrange each directory so that the variables you need most
frequently are at the start of the directory and appear at the beginning of the VAR
menu. Better yet, use a custom menu (section 7.3) to show a subset of a directory's
variables, III an order that won't change as you create or delete variables in the
directory.

• If a program uses variables that have no use in manual operations, put those
variables in a directory that is a parent of the directory containing the program.
This keeps the variables from cluttering up the VAR menu that includes the program,
and helps prevent the program's users from altering or deleting the variables.

The last guideline indicates a structure like the following:

Home: 1 MATH APPL1 1 APPL2,1 MDIR 1 UTIL1 1 UTIL2

M"h ",i1i,i", J APPL UMAT1 I UMAT21

Math programs: I' POLY 1 ORD3 1 TRI

The example home directory "application" variable in the figure is MATH. The variable
MATH contains the program « MDIR APPL », which first makes MDIR the current
directory, then APPL. When you press ':':MATH':': , therefore, you bypass the math utility
subdirectory MDIR containing the programs and activate the APPL subdirectory. This
subdirectory contains the directly usable application programs, POLY, ORD3, TRI, etc.,
that are associated with the ':':MATH':': key. These programs use subroutines named
UMAT1, UMAT2, etc., which are stored in the directory MDIR that is the parent direc­
tory for APPL.

The programs in the APPL directory are those you are likely to use from the keyboard.

-150-

Storing Objects 6.1

These programs can use any of the utility programs in MDIR or in the home directory.
But while the APPL directory is current, the VAR menu contains only keyboard-useful
programs--you're not distracted by seeing utility programs in the menu. Also, while
APPL is current, you don't have to worry about unwittingly overwriting one of the utility
programs.

6.1.2.2 Directory Objects
In the discussion so far we have described a directory only as a collection of variables.
However, it is important to note that a directory is itself an object, with all of the pro­
perties of a regular HP 48 object --a directory can be recalled, edited, copied, executed,
etc. In the current example, you can recall the directory DIR2 by pressing [f3:>]IHOMEI [f3:>]
"DIR2" :

{ HOME}

2:
1: DIR

ABC 654
END DID DlDDDI IJDI __

The directory object is now in level 1, displayed using the DIR ... END syntax described in
section 3.4.10. You can now create a new directory variable by storing the stack object
in a new variable. This ability is convenient when you want to move the contents of a
directory--you can use the same moving strategy as for any other variable, as described
in section 6.1.7. You can also edit a directory object: here, press @::iJIEDITI or CZJ:

PFiG
{ HOME}

Press - SKIP- - twice to put the cursor on the 654, then press [±E] to negate the 654, and

-151-

6.1

then IENTERI :

{ HDt-1E }

2:
1: DIF:

ABC -654
END IIIDDlDIImIIIITIH __

Storing Objects

Now you have a new directory object, different from the original still stored in the vari­
ahle DIR2. However, if you try to replace the contents of DIR2 with the new ohject by
pressing @2j ~ DIR2~ , the HP 4X returns the Directory Not Allowed error. Because
directories can contain major portions of user memory, variables that contain directories
are given a special protection. You can not apply STO, or any other operation that
changes the contents of an existing variable, to a directory variable. To replace the old
DIR2 with a new one, then, you must first delete the old version. But there is one more
level of protection that you must ddeat: PURGE, the command that removes a global
variable (see section (J.l.5), will not work on a directory variable unless the stored tlirec­
tory is empty--contains no variables itself (Non-Empty Directory error). Try this:

~ DIR2~ 'ABC' @2jlpURGEI @2j['i.!£] 'DIR2' ~lpURGEI.

This sllccessfully purges the old DIR2, so you can proceed to store the new copy by
entering 'DIR2' ISTOI. Now recall DIR2 (press ~~DIR2~), and you can see that it con­
tains the new directory, with the value -654 in the variahle ABC.

The rule against storing into a non-empty directory variable also extends to EDIT (sec­
tion 4.4). Executing EDIT on the name of a directory variahle proceeds normally until
you press IENTERI to store the modified directory object. Then the HP 48 returns the
Directory Not Allowed error. However, in this case, the modified directory and the
variable name are left on the stack, so you can delete the original directory if you want
then store the new version from the stack.

In addition to the special variable protection, directories exhibit two other peculiarities
that are not shared by any other object type. To demonstrate the first, execute the fol­
lowing, with the copy of DIR2 still on the stack (if you have changed the stack, execute
~IHOMEI ~~DIR2~ first):

-152-

Storing Objects

{ HOME DlFi2 }

4:
3:
2: DIR ABC 654 END
1: -654 Ga ____ _

6.1

Here you can sec the surprising effect that changing the stored directory (by changing
one of the variables within it) also changed the recalled copy of the directory, now in
level 2. For other types of objects, changing an object in a variable has no effect on a
previously recalled eopy--notice that the - 654 in level 1 is unchanged. If you want to
modify a stored directory without changing a copy, you must first execute NEWOB (sec­
tion 11.6) on the copy. [The reason for this behavior derives from HP 48 memory
managcment, which does not permit recalling objects from within unstored directories.]

The other idiosyncrasy of directories is that you can't store a directory within itself
(which is not unreasonable, if you think about it). Try this, with DIR2 as the current
directory:

'DIR2' ~IRCLI 'XYZ' ISTOI Directory Recursion error.

This message means that you tried to define a directory in terms of itself, which IS

something too hard even for the HP 48 to do.

6.1.3 The Memory Browser
~ IMEMORVI activates the memory browser, an input form (section 4.5) that provides a
screen interface for performing simple tasks related to global variables. The initial
screen looks like this, where the displayed variables come from the ongoing example
(press ~IHOMEI first):

jjjjj]jj][jj[OBJECT::: IN { HOME } mmmu:
DIR2: DIR ABC 654 Ell.
DIR1: DIR ABC 987 D",
DEF: 456
ABC: 123

-153-

6.1 Storing Objects

The display shows the current path at the top, a list of the first five variables in the
current directory, and a menu of operations. The operations are largely self­
explanatory; here we will compare the operations with command or program equivalents
that you can execute outside of the memory browser.

The most useful input forms are those that may be used to assist you in setting a large
number of parameters associated with an operation. You can manually create a plot,
for example, by choosing the plot type, scale, function, etc. with independent commands
(as you might in a program). But it is usually easier to use the plot input form (~
IPLOTI), where the display helps you to keep track of the parameters. For memory
browser operations, however, the advantages are less compelling. For example, to
create a new directory ABC from the standard environment, you just execute 'ABC'
CRDIR, which can he done with the keystrokes

'ABC' @2lIMEMORVI ~DIR~ =CRDIR= .

Using the memory hrowser for this task requires a larger number of keystrokes:

~IMEMORVI ~NEW~ C2J ABC

The hrowser method is also slower, because of the time it takes to display the partial
contents of five variables when you first activate the environment.

The memory hrowser is nevertheless useful at times because of its continuous variahle
name/contents display. For example, you may wish to purge one or more variahles, hut
you want to make sure you are deleting the right ones hy looking at their contents as
you purge them. The ~ IVIEWI operation in the stack environment is useful for this
purpose, hut its display disappears at the next keystroke.

Looking at the individual memory browser operations and their command/program
equivalents:

• ~ EDIT~ copies a variable's contents into the command line, where you can modify it;
IENTERI replaces the old version with the new one. ~ EDIT~ is equivalent to @2lIEDITI with
the variable's name in level 1 (section 4.4).

• = CHOOS- displays the current directory structure:

-154-

Storing Objects

HO~1E
DIR2
DIRl

6.1

You can select a particular subdirectory by highlighting it with []SJ or [12] . '" OK", then
switches to that subdirectory and reverts to the variable contents display. In the stack
environment, you switch to a subdirectory by executing its name or by pressing its
(tabbed) menu key in the VAR menu; HOME and UPDIR (~[JJ£J let you move
upwards through the directory tree.

• = vCHK= lets you select several variables for the three operations in the second page of
the browser menu: ",RCL", , ",PURG", , and ~SIZE~. When any variables in the display arc
checked, any of these operations is applied to all of the checked variables at once (if
none arc checked, the operation is applied to the highlighted variable). Note that
changing directories with = CHOOS- clears any checks from variables in the previous sub­
directory. The stack equivalent is to enter the variables' names into a list. This is easily
done by pressing ~ ITIJ and then each of the variables' VAR menu keys.

• ",NEW", is for creating a new variable in the current directory. The command form of
this operation is STO.

• ",COpy~ and -MOVE- move a stored object from one variable to another, where
",COpy", preserves the original variable, and - MOVE- removes it. Entering a path list
into the MOVE TO: or COPY TO: field lets you move the object to a different subdirectory
from the current one. If the path list ends with a name that does not correspond to a
subdirectory, that name is used as the new variable name, within the subdirectory speci­
fied by the remainder of the path list. Programs for copying variables are listed in the
next section.

• ",RCL", recalls to the stack the object stored in the highlighted variable. If one or more
variables are checked, all of those are recalled, in the order in which they appear in the
display. In the standard environment, you can recall several variables by creating a list
of the desired variable names, then executing« RCL» DOLIST (section 11.4.4.1).

• ~ purges the highlighted variable or the checked variables. This is equivalent to

-155·

6.1 Storing Objects

executing PURGE on a list of variable names .

• ~SIZE~ makes a display like this:

:n:mm: []BJECTS IN { H[]ME } mm:mm
U DIR2: [;II

Dl 33 bytes D.II
DE Merta Available:
AE 125054 bytes

-----~
This shows the size in bytes (rounded up to the nearest integer) of the highlighted vari­
able, including its name (section 12.5.1). If two or more variables are checked, then the
size given is the sum of the checked variables' sizes. The display also shows the
currently available memory. The command equivalents of the operations are BYTES
and MEM.

6.1.4 Cataloging and Finding Global Variables
The VAR menu, ~ MEWI , and the memory browser are convenient for manual review
of the current directory. For program applications there are several commands that
provide information about directories and their variables. Two of these, VARS and
TVARS, are used in the program FIND listed below.

VARS returns a list of all of the variables in the current directory. The list contains the
variables' names in the same order in which they appear in the VAR menu. If you exe­
cute VARS 'name' POS, for example, you will obtain the numerical position of the vari­
able name in the current directory, or zero if the variable is not present. You can also
create a list of variables containing objects of a certain type or types, using TVARS
(Typed VARiables). TVARS takes a real number or a list of real numbers, and returns a
list containing the names of all of the variables in the current directory that contain
objects of the types specified by the argument.

For a single variable, the command VTYPE applied to the variable's name returns the
type of the object stored there, as a real number (see Table 3.1 in section 3.2 for a list
of objeet type numbers). It is equivalent to RCL TYPE, with the exception that VTYPE
returns - 1 if the specified variable does not exist in the current directory.

The program FIND locates a global variable by name anywhere in the user memory

-156-

1
!
I

Storing Objects 6.1

labyrinth, by searching through thc current directory and all of its subdirectories for
variables with that name. Given a global name as its argument, FIND returns (to level
1) a list containing the path lists for any variables of that name. (To search all of user
memory, execute HOME FIND). If there is only one such variable, the result is a single
path list; if there are more than one, the result is a list containing two or more path
lists. An empty list indicates that the variable is not present. FIND leaves the original
name argument in level 2, in case you want to recall or execute the contents of the vari­
able once you have found it.

FIND Find a Variable

level 1

'nanlc'

'name'
'nanlc'

« «

»

{ }
IF VARS -name POS
THEN PATH 1 -LIST +
END 15 TVARS
IF DUP {} of.
THEN SWAP 1 3 PICK SIZE

FOR n OVEF: r ::3ET
EVAL -dodii ['//'d.

+ UPDIR
NEXT SWAP DROP

ELSE DROP
END

DUP2 - -name -dodir
« EVAL

IF DUP SIZE 1 = =
THEN OBJ- DROP
END

6.1.5 Deleting Global Variables

I

Co,.
c.,

a_~

level 2 level 1

'nanzc' { }
'nanlc' {path}
'name' { {path d ... {path,,} }

Start of subroutine.
Sta rt with an empty list.
If the variable is in this directory,
then add the name to the list.
Now get a list of all the subdirectories.
If there are any,
then apply dodir to each.

I (ict the nth subdirectory.
1l::Xuute dodir.
Add any paths found to the list.
Repeat. or discard the directory list.
Discard the empty list.

Store name and subroutine.
Execute the subroutine.
If there's only one path.
then shed the outer list.

F9AE

The command PURGE removes from memory the variable that is specified by a global
name argument. It does not error if the variable does not exist, so that you can delete a
variable without bothering to check to see if it is present. When a variable is removed,
its position in the VAR menu is filled in from the right by the remaining labels in the
menu.

In the previous section, we succeeded III removing a directory by purging its only

-157-

6.1 Storing Objects

variable, then purging the directory itself. The HP 48 provides three methods for delet­
ing several variables simultaneously, or entire directories:

• PURGE works with a list of names as well as with a single name. Each variable
named in the list is purged, starting with the first and proceeding to the end of the
list. If a non-empty directory's name is encountered in the list, the Non-Empty
Directory error is returned, and the variables named following the directory are not
purged. The list may also contain port names (section 6.4.2).

• CLVAR (CLear Variables) deletes all of the variables in the current directory. It is
equivalent to VARS PURGE, including stopping after partial completion if it
encounters a non-empty directory. [For sake of compatibility with the HP 28,
CLVAR can also be entered as CLUSR.j

• PGDIR (PurGe DIRectory) removes a directory specified by name. It docs this by
recursively executing CLVAR and PURGE recursively on each subdirectory until the
original directory is empty. (This process can take a relatively long time if the direc­
tory is large.)

Under unusual circumstances (such as following a system halt executed during a
wircframe plot), you may find a variable stored in user memory with a name that
violates the normal naming rules. The nonstandard namc makes it impossihle to enter
the name from thc command line. Howcver, VARS will return the namc in its rcsult
list; from there you can cxtract it with GET and then usc PURGE to delete the variahle.

6.1.6 Cancelling STO and PURGE
The HP-48 uses its argument recovery facility (section 5.3) in a non-standard way to
provide a method for recovering from an accidental overwrite of the contents of a global
variable. After the STO command itself is executed, LAST ARG returns the stack argu­
ments: the variable name to level 1, and the stored object to level 2. However, if the
ISTOI key is used in immediate-execute mode (section 4.3.1), the resulting store differs
from the normal STO command in two ways:

• The Circular Reference error is returned if the two stack arguments are both the
same (global name). This prevents simple endless execution loops (section 3.6.1).

• If the named variable already existed, LAST ARG returns the object that was previ­
ously stored in the variable to level 2, rather than the newly stored object. Thus you
can use ~ IARGllsTOI ~ IARGI to cancel the effect of an incorrect store, restoring
the stack and the variable to their states prior to the incorrect store.

The variable protection of the ISTOI key also applies to the other keyboard store
operations--pressing unshifted HP Solve variables menu keys, or left-shifted VAR or
CST menu keys. It does not apply to the programmable command STO, or to ISTOI

-158-

1

Storing Objects 6.1

when the name argument is other than an untagged global name, or to operations
within the memory browser (section 6.1.3).

A similar recovery facility works with the @:iJ IpURGI key, when the argument is an
untagged global name. In this case, LAST ARG returns the purged object to level 2 as
well as the name argument to levell, so that you can undo an accidental purge by
pressing ~ IARGIISTOI. Again, PURGE executed from the command line or in a pro­
gram, or with a list argument, retains the normal last argument action.

You should realize that this non-standard but useful behavior of the ISTOI and @:iJ IpURGI

keys means that replacing or deleting a storcd object does not immediately recover the
memory associated with the object, since the object is kept in the last argument memory
until replaced by the arguments of a subsequent command. You can use the command
form of the operations when you want to be sure to discard the old object immediately;
e.g. usc ~IENTRYIISTOIIENTERI instead of Is TO I. Or you can execute another command
(or a system halt) to rcmove the old ohject from last argument memory after the store
or purge.

6.1.7 Moving A Variable
There arc three different ways to "move" a glohal variahle:

• Change its position among the other variahles in a directory, using ORDER (section
6.1).

• Rename it, i.e. assign a different name to the same stored object.

• Remove the variahle from its directory and re-create it in a different directory.

Strictly speaking, it is the stored object that is moved, hut it is usually convenient to
speak in terms of moving the variahle--name plus object together. There is no built-in
command for renaming a variable, but you can use the following sequence, with the ori­
ginal name in level 2, and the new name in level 1:

OVER RCL ROT PURGE SWAP STO

The program RENAME elaborates on this sequence, putting the new variable III the
same position as the old:

-159-

6.1 Storing Objects

RENAME Rename a Variable 2837

level :2 level 1 I

'old-namc' I new-nanlc' 1!1

« VARS DUP 4 PICK POS Find the variable's position in the directOly.

1 - 1 SWAP SUB List of preceding names.

ROT DUP RCL SWAP Recall the object.

IF OVER TYPE 15 SAME If it is a directory.

THEN PGDIR purge with PGDIR;
ELSE PURGE otherwise. use PURGE.
END ROT STO Store the object.

IF DUP SIZE If the name list is not empty.

THEN ORDER Then moved the renamed variable.

ELSE DROP
END

»

The program MOVE on the next page move;, a variable l'row llne directory to another,
or to and from a port. MOVE uses two arguments, either of which can bc a name
(tagged for a port variable) or a path name. The path specified by the latter should be
the path from the current directory to the directory containing the new or old variable.
The name of the original variable should be in level 2, and the name of the new variable
in level 1.

COpy uses the same arguments as MOVE, and calls MOVE with an extra object (0) on
the stack that signals MOVE not the purge the variable. The order of operations in
MOVE is a little convoluted because if the original variable is to be purged, it is IT.ore
memory efficient to execute the purge hefore the new store.

COpy Copy a Variable EMF

ICl'el 2 !CI'd I I

path-namc] path-namcz 1!1

« 0 SWAP Signal MOVE to not purge.
MOVE Make the copy.

»

-160-

Storing Objects

MOVE Move a Vatiable

level.' level I

path ~/laI1lC I path ~/lame 2 U"

« PATH

« IF OUP TYPE 5 SAME

THEN OUP SIZE OUP2 GET

3 ROLLO 1 SWAP 1

ELSE {)

END EVAL

SUB

Subroutine to find a variable:

Is this a path name'!

Then get the variable name,

and the path list.

Otherwise. usc a null path list.

45C9

- new p S

<', IF OUP 0 SAME

S;lVe the new name, old path and subroutine.

Check for the signal from COPY.

THEN DROP s EVAL RCL

ELSE

s EVAL OUP RCL SWAP

IF OUP TYPE 12 ~ ~

THEN SWAP NEWOB SWAP

END

IF OUP VTYPE 15

THEN PGOIR

ELSE PURGE

END

END

P EVAL new s EVAL STO

P EVAL

6.2 Local Variables

For COPY, just recall.

For MOVE. purge the original:

Recall the object.

If object came from a port,

Then free the object.

Purgt:- the variahle:

Lse PGOIR tlll' a direct()jy.

USC PURGE othelwise.

Store the object in the new V'ariable.

Return to original directory.

6.1

Although we will defer a detailed discussion of local variables to section 9,7, they need
to be described briefly here in the context of storing objects, Local variables are vari­
ables created for temporary use by a procedure, They are handy because they can have
any name without conflicting with command names, global variables, or any other
procedure'S local variables, and because they are automatically deleted when their defin­
ing procedure completes execution ..

Local variables are created by the program structure words ~ (section 9.7) and FOR
(section 9,5,1) .. For example, enter the following program:

~ 161 ~

6.2

« 'JACK' 'JILL' ~ local1 local2
« HALT
»

»

Storing Objects

Store the program in the variable HILL, in the directory DIR1 created in section 6.1.2:

r:;±lIHOMEI IVARI IDIRll 'HILL' ISTOI.

Now execute the program--press ",HILL",. Notice that the HALT annunciator turns on,
hut nothing else visible happens. But if you type local1 IENTERI , the name' JACK' is
returned to the stack. When the program executes, the ~ creates two local variables (as
many as there are names following the arrow), storing in them two objects taken from
the stack (one for each name). The inner program that follows the final name local2
(the « marks the end of the series of names) defines the "duration" of the local vari­
ables: the variables are maintained during the program's execution, then deleted by the
closing ». In this case, execution is suspended by the HALT (section 12.3), and the two
local variables remain available until you press ~ICONTI to finish the program.

The names local1 and local2 are local names, which arc a different object type than the
glohal names used so far in this chapter. As mentioned in section 3.6.2, executing a
local name recalls the ohject stored in the corresponding local variahle without execut­
ing it, hut otherwise local name~ arc similar in usc to glohal names.

For local variables, there is no automatic catalog like the VAR menu. A portion of RAM
containing local variahles is called a local memory, and is essentially invisihle other than
hy recalling the stored ohjects. [Like the stack, a local variable does not contain a copy
of an ohject stored there, hut only a pointer to the object. Copying an ohject from a
global variable to a local variable, for example, only requires enough memory for the
name text plus a few additional bytes of overhead.]

6.3 Additional Global and Local Variable Operations
The commands descrihed in this section apply to global and local variables, but not to
the port variables descrihed in section 6.4.2.

6.3.1 Recalling Values
There are two fundamental ways to "recall" the value of a variable:

• Execute a name object. Executing a global name executes the object stored in the
named variable. For data ohjects and algebraic ohjects, this just recalls the object to
the stack. For example, if you have stored the number 25 in a variable named X,
pressing 00 IENTERI returns the number 25 to level 1. Executing a local name always

·162·

T
.~
1

1

!
J

Storing Objects 6.3

recalls the stored object without execution, regardless of the object type.

• Use RCL. 'name' RCL returns the object stored in the (local or global) variable
name to the stack, without executing the object. RCL is primarily used for global
variables that contain programs and names, in cases where you just want to put a
copy of the stored object on the stack. For data objects and algebraic objects,
, name' RCL has the same effect as just executing name, except that the latter does
not affect last arguments (section 5.3).

The commands GET and GETI allow you to recall individual elements from arrays and
lists stored in variables, without having to recall the entire object to the stack. For GET,
the stack usc is

object index GET c_;,' element,

where index specifies the clement to retrieve:

• For a list or a vector, the index is a real numher, or a list containing one real
numher.

• For an array, the index is either a real numher (the clement numher, counting in
"row order" -- left to right, top to hottom) or a list of two real numhers (the clement
row and column).

• When the index is entered as a list, the list clements can also be names or pro­
cedures that numerically evaluate to real numhers (section 11.5.1.1).

The object in the above sequence can either be the list or array itself, or the name of a
global or local variable in which the list or array is stored. Thus,

{A B C} 2 GET n 'B',

or
{A B C} 'D' STO 'D' 2 GET n 'B'.

GETI is designed for sequential recall of the elements in a list or array, and returns the
object or its name, and the index incremented to the next element, as well as the
recalled element. The general form of GETI is

object index GETI J] object index+ element,

where object and index are the same as for GET, and index + is the same as index except
that its value is incremented to represent the next element. Thus,

-163-

6.3 Storing Objects

{A B C} 2 GETI L,~ {A B C} 3 '8',

If index points to the last element, GETI returns either 1, { 1 }, or { 1 1 } for index + , as
appropriate to cycle back to the first element. GETI also sets flag - 64 when this occurs,
or clears the flag otherwise, so that a program can easily determine when it has come to
the end of a list or array.

GET can also be executed implicitly within algebraic expressions by using a function
syntax--see section 11.2.

6.3.2 Altering the Contents of Variables
The most straightforward means of changing the contents of a variable is to store a new
object into the variable using STO. However, there are a number of commands that let
you modify a stored object short of replacing it entirely, without having to recall the
object to the stack. These are the "storage arithmetic" commands found in the [<5J
IMEMI -ARITH - menu: STO +, STO -, STO *, and STO /, and the specialized versions
INCR and DECR, plus the single argument commands SNEG, SINV, and SCONJ. In
addition to the arithmetic commands, the four array commands CON, ION, ROM, and
TRN can be applied to arrays ston:d in variables. PUT and PUTI, the storing counter­
parts of GET and GETI, allow you to alter individual clements in a stored list or array.
Finally, there arc several commands associated with the reserved-name variables sllch as
EO, PPAR, 2: OAT, etc., lIsed by various built-in systems. We will discuss these com­
mands in the chapters of Pari II that describe the associated systems.

6_~.2.1 Store Menu Commands
Storage arithmetic is the application of +, -, *, or / to two objects, where one object is
on the stack and the other stored in a variable, without having to recall the latter to the
stack. For example, 25 'X' STO + adds 25 to a number stored in X. More generally,
STO +, STO -, STO *, and STO / use a syntax similar to that of STO:

object 'name' STOe,

where the e stands for any of the symbols +, *, or /. Name IS a global or local
name, which must refer to an existing variable. Furthermore,

'name' object STOe

is also allowed. Either sequence combines the object in level 2 with the object stored in
the variable name, leaving the result stored in the same variable. The object and the
name are dropped from the stack. Note that (unlike on the HP 28) the two objects do
not have to be numerical--they can be any types that are suitable arguments for the

·164-

T

Storing Objects 6.3

stack - operation. For example, if the variable A contains the string "Hello there", then
the sequence

'A' ", world" STO+

replaces the contents of A with the string "Hello there, world".

As for the corresponding stack operations, the order of the storage arithmetic com­
mands' arguments is significant. In effect, the result is the same as if you replaced the
name object on the stack with the object from the named variable, then performed the
stack command:

• object 'name' STO- computes

(n,w ,,/a,) = ("a,k obi''') {~ } (old ,a/a,).

In this case, STO- is equivalent to

DUP RCL ROT SWAP - SWAP STO.

If X has the value 1, then 3 'X' STO - stores 2 in X.

• 'name' object STO- computes

(o,w ,uJa,) = (o/d ,a/a,) t ~ } (,fack obj"f).

Here STO- is equivalent to

OVER RCL SWAP - SWAP STO.

With 1 stored in X, 'X' 3 STO - stores - 2 in X.

There is an ambiguity in this design when both stack arguments are name objects. In
this case, the HP 48 interprets the level 1 name as the variable name; this arbitrary
choice to match the sense of the arguments for STO was made as an easy-to-remember
rule. Thus if you have the list { CD} stored in variable B, 'A' 'B' STO + returns the

-165-

6.3 Storing Objects

list { A CD} to B (rather than adding or concatenating the name B to the contents of
A). The rule does imply that you can not use STO + to concatenate a name to the end
of a list stored in a variable.

63.2.2 Counter Variables
I NCR and DECR are specialized forms of STO + and STO ~ that make it easy to use a
global or local variable as a simple counter. INCR adds 1 to a real number stored in the
variable specified by a name argument; DECR subtracts 1. Both commands return the
result value to the stack, where you can compare it, for example, with some limit value.
Thus 'name' INCR is equivalent to the sequence 'name' DUP 1 STO+ RCL, but exe­
cutes about twice as fast.

6.3.2.3 PUT and PUTI
PUT and PUTI allow you to store individual clements into an existing array or list, using
a syntax similar to that of GET and GETI (section 6.3.1).

For example,

{A B C} 2 'D' PUT J.7· {A DC}.

Hcrc the target list itself is on thc stack. The target can also he identified hy name:

'MAT' 3 3 3 4

stores the number 25 in the 3-3 clement of a matrix stored in the variable MAT, and
leaves the name and the incremented index (here assumed to indicate the 3-4 clement)
on the stack.

6.3.2.4 Additional Array Commands
The four storage arithmetic commands described in section 6.3.2.1 treat arrays stored in
global variables differently from other object types in order to save memory. For
objects other than arrays, the arithmetic is performed the same way you might do it
using stack commands-- the stored object is recalled to the stack, combined with the ini­
tial stack object, then stored back in the variable. For arrays, the arithmetic is per­
formed in place, with the result array elements replacing the stored elements as they are
computed. This makes it possible to perform the array arithmetic without needing
enough free memory to copy the destination array. (If you interrupt such an operation
with [Q[] , the array will likely be worthless, since it will contain a mixture of old and
new values.)

-166-

•

Storing Objects 6.3

The HP 48 provides seven additional commands that modify a stored array in place to
conserve memory. For each, the stored array is represented on the stack by the name
of the variable in which it is stored; the result replaces the original array.

SNEG negates the stored object.

SINV computes the reciprocal of a stored number or square matrix.

SCONJ computes the complex conjugate of the stored object.

CON converts an arbitrary array into a constant array (all elements are the same),
where the constant number is specified on the stack.

ION converts a square matrix into the identity matrix.

TRN transposes and conjugates an array.

ROM redimensions an array according to the dimensions specified by a list of one
or two real numbers. Note that ROM can change the total size of an array if
the new dimensions correspond to more or fewer elements than are in the
original array.

PUT replaces an clement in an array (or list).

PUTI replaces an clement in an ar;ay (or list) and returns the index of the next ele­
ment.

SNEG, SINV, and SCONJ also work with stored real or complex numbers, unit objects,
global or local names, and algebraic objects, although there are no memory savings for
these types. There are also no savings for any of the nine commands if the target object
is stored in a local variable instead of a global.

6.4 Ports
A port is an independent portion of memory that is established to contain libraries and
port variables. The storage of libraries in port memory rather than in user memory
enables the HP 48 to keep track of them more easily, resulting in faster execution of the
commands within the libraries. The HP 48 system defines 34 possible ports:

• Port 0 is permanently defined in main RAM. It is the only port available on an
HP 48S or HP 48G .

• Port 1 is the memory (up to 128K) on a card inserted into card slot 1. If the card
contains RAM, that memory can be merged with main memory, or configured as
independent memory Port 1 (see the next section). If the card is ROM, or a RAM
card with its write-protect switch on, its memory will always be independent.

-167-

6.4 Storing Objects

• Port 2 is independent memory in a 32K or 128K RAM eard in slot 2. On the
HP 48GX, RAM in the second slot is always independent; it can not be merged into
main memory .

• Ports 3-33 are 128K blocks of independent memory within a memory card 256K or
larger in slot 2.

There are two methods for determining the contents of a port: the LIBRARY menu,
which is explained in section 6.4.3, and the command PVARS. With an argument of 0,
1, or 2 to specify a particular port, PVARS (Port VARiableS) returns a list analogous to
that of VARS (section 6.1.4), containing the number of each library and the name of
each variable in the corresponding port, with each object in the list tagged with the port
number. PVARS also returns (to level 1) one of the following objects:

Object

real !lumber
"ROM"
"SYSRAM"

Meaning

Amount of free memory left in the port (RAM).
The port contains ROM or write-protected RAM.
The port memory is merged (the contents list will be empty).

The free memory reported by PVARS for port 0 is the same amount returned by MEM.

PVARS provides a convenient means for deleting all of the objects in a port. For exam­
ple,

a PVARS DROP PURGE

removes all of the objects from port o.

6.4.1 Plug-In Ports
When you plug a memory card into either card slot and turn the calculator on, the cal­
culator checks the card to determine whether the card memory contains a valid
sequence of libraries and port variables. When the HP 48 cannot recognize the card con­
tents, the message Invalid Card Data is displayed. If the card is ROM, the card is not
usable in the HP 48, and should be removed. If the card contains RAM, you can ignore
the message--the first attempt to merge the card memory or store a library or port vari­
able there will organize its memory properly, and prevent further Invalid Card Data
errors. If it is not convenient to do this, you can execute PINIT, which resets the
memory in any RAM port that exhibits invalid data (this is particularly useful for large
RAM cards in slot 2, which may contain many ports).

When a newly inserted card is recognized as valid by the HP 48, the card memory IS

-168-

i
I

i

Storing Objects 6.4

configured as an independent port, and an entry for the port will appear in the
LIBRARY menu. The libraries and variables in the card are then available using the
procedures outlined in the preceding parts of this chapter. If the card contains RAM,
you also have the option to leave it as an independent port, or to merge the card's
memory with main RAM. As long as a card is configured as independent RAM, you
can remove and replace it at will (remember to turn the calculator off when inserting or
removing cards), or move it to another HP 48. An independent RAM card is a very fast
and convenient means for transferring objects from one calculator to another.

The command MERGE1 merges the memory in a plug-in RAM card in slot 1 into main
memory. MERGE1 is equivalent to 1 MERGE--the latter command is provided for com­
patihility with the HP 48SX, where it can also accept 2 as a argument. If the card
memory contains port variables and libraries, these arc moved automatically to port O.
The amount of free memory returned hy MEM is increased by the amount of memory in
the card (32K or 128K bytes) less the memory used hy the port variables and lihraries.
Once you have merged card memory, however, you can not remove the card without
potentially corrupting memory contents. If a merged card is removed (including the
case where the calculator is dropped hard enough to jar a card loose), the HP 48 warns
you of impending disaster by beeping and displaying Replace RAM, Press ON. By fol­
lowing that instruction, you can preserve memory contents; otherwise the contents of
main memory and the card memory arc lost. If there is no card in port I, or it is a
ROM card, or a RAM card with its read/write switch set to write-only, the Port Not
Available error is returned by MERGE1.

The reverse of merging a card's memory is to free it using FREE1. (You can also use 1
FREE, which is provided for HP 48SX compatibility.) FREE1 uses one argument select
objects from port 0 to the moved into the newly freed port. The argument can be a
library number, or the name of a port 0 variable, or a list containing any mixture of
library numbers and names. If you just want to free a port without moving any objects
there, use an empty list.

6.4.2 Port Variables
One advantage of storing an object in the home directory is that it is always accessible
by name, no matter which directory is current. This makes the home directory the logi­
cal place to store general purpose variables, such as the program FIND described in sec­
tion 6.1.4. However, if you store too many variables in the home directory, the associ­
ated VAR menu becomes unwieldy.

Port 0 is another portion of memory that plays a role similar to that of the home direc­
tory. You can create one or more variables there; .the variables are universally accessi­
ble by name; and there is an automatic menu associated with the port. Port 0 is always

-169-

6.4 Storing Objects

available, but in an HP 48GX you can also create additional ports by inserting RAM
cards into one or both card slots. A RAM card in slot 1 becomes port 1; a RAM card
in slot 2 can contain one or more ports, equal in number to its memory size divided by
128K. The maximum card size is 4 megabytes, which makes the maximum port number
33. We will use port 0 as an example here, but the properties of port 0 also apply to
any other port 1-33.

A named object stored in a memory port constitutes a port variable. Like a global vari­
able, it is a combination of a text name with any object, providing access to the stored
object by means of the name. The HP 48 does not define a unique name object type for
port variables as it does for global variables, local variables and commands. Instead, the
commands that access port variables recognize global or local names tagged with a port
number 0-33 as designating port variables. For example, :O:ABC RCL recalls the object
stored in a port variable ABC in port o. We will refer to such tagged names as port
/lames.

[The HP 48 manuals refer to port variables as backup objects. This is somewhat
misleading, since a backup object (section 3.4.12) is actually an object that in some cir­
cumstances can appear on the stack. We prefer the term port variable, by analogy with
global and local variables.]

There are six commands that accept port name arguments of the form :n:name:

STO creates a new port variable name in port /l. The object to be stored is taken
from level 2, and the port name from level 1.

RCL recalls the object stored in the specified port variable.

EVAL executes the object stored in the specified port variable.

PURGE purges the specified port variable. PURGE will also accept a list of global
names and port names, and purge all of the variables named in the list.

PRVAR prints the object stored in the specified port variable. Like PURGE, PRVAR
will operate on a list of global names and port names.

ARCHIVE makes an archival copy of user memory and stores it in the specified port
variable.

The port number /l used with these commands can be can be the number 0-33 of any
existing port, or, except for STO and ARCHIVE, the character &. When the latter is
used, the HP 48 searches for a variable with the specified name in the highest numbered
existing port, then, in necessary in each subsequent lower port until a match is found. If
there is no matching port variable, the tag is ignored and the name is treated as an ordi­
nary untagged global or local name. This feature allows programs to use objects that

-170-

Storing Objects 6.4

may move around among the ports and main memory. ARCHIVE also accepts a name
tagged with :10:, for which the archived user memory is transmitted to the serial port as
a Kermit file.

Only the six commands listed above recognize port names. Other commands ignore the
tag on a port name and operate on the untagged name. This can lead to some
surprises: for example, :O:ABC STO+ always attempts to add (see section 6.3.2.1) to
the contents of a global or local variable ABC, even when there is a port variable ABC
in port O.

One consequence of the HP 48GX memory management scheme that allows multiple
ports in slot 2 is that objects stored in any of those ports are copied to temporary
memory in main RAM when they are recalled or executed. Since the time required to
perform the copy is usually negligible, the principal effect of this behavior is that there
must be enough free memory to copy an object before you can use it. If an object is
large enough, you may be able to storc it in a port, but then latcr not be able to access
it without removing something from main memory.

6.4.2.1 Port Menus
As an example of creating port variables, enter the following:

234 :O:ABC ISTOI 567 :O:DEF ISTOI.

Assuming that the home directory still contains the variable ABC created earlier in the
ongoing example, executing ABC still returns the value 123 stored in that global vari­
able. In order to return the value just stored in the port variable ABC, you must include
the port-number tag:

:O:ABC IEVAL! LT 234.

Port menus are automatic operational catalogs of port variables, analogous to the VAR
menu for global variables. Pressing @J]IUBRARVI-PORTS- makes a display like this:

{ HOME}

4:
3:
2:
1 : _--

-171-

6.4 Storing Objects

You will always see at least the a label for port O. If you have memory cards plugged
into card slots, you will also see labels for each existing port. In the ongoing example,
press ~ :0: ~ :

{ HOME}

4:
3:
2:
1 : DDlITIa ___ _

This activates the port 0 menu, where you see menu keys for the port variables ABC and
DEF created earlier. Pressing either of the labeled menu keys returns the number
stored in the corresponding variable:

~ABC~ C_T 234.

As for VAR menu keys, when you press a port variable menu key, the object stored in
the specified port variable is executed. The right-shifted menu keys also perform a RCL
like a VAR menu key; the left-shifted menu key attempts to execute STO, but like STO
itself, this fails because you can't store into an existing port variable (section 6.4.2). In
program entry mode, the @:l} and ffishifted menu keys echo the port name followed
by STO and RCL respectively.

Because a port name is a tagged object, it is effectively already quoted and therefore
you do not quote a port name to enter it on the stack for use as an argument. If you do
attempt to enter a port name within single quotes' " you will obtain an Invalid Syntax
error message, because tagged names are not allowed in algebraic expressions. You can
nevertheless use port menu keys to enter port names: press [;.:t>] IENTRYI first to activate
program entry mode, then press the appropriate menu key. This enters the port vari­
able name preceded by the appropriate port number tag.

6.4.2.2 Altering Port Variables
Port variables are intended for object storage that is somewhat more permanent than
that offered by global variables. For this reason, the contents of port variables can not
be changed once they are created, short of deleting them with PURGE. STO returns
the Object In Use error if you attempt to overwrite the contents of an existing port vari­
able. Furthermore, you can't delete a port variable if the stored object is referenced, in
which case PURGE returns the same error message as STO. Referenced means that a

-172-

l
i

Storing Objects 6.4

stored obj ect (or part of it) has been recalled by one means or another, and the recalled
copy is still present--on the stack, in argument recovery or stack recovery memory, on
the program return stack, or in a local variable. Specifically, this means that there is a
pointer to the port variable object in any of these areas--see section 5.7. On a
HP 48GX, this can only happen for port 0 or port 1, since objects in higher ports are
copied to temporary memory when they are recalled. To succeed in purging a port 0 or
port 1 variable, you must first remove all such references to the object, either individu­
ally, or collectively by executing a system halt I ON I - Q;J). Some references may be
very subtle; for example, if a program enters an an object that is left on the stack or in a
local variable, the program will be referenced until the object is removed. Or, if a pro­
gram uses DOERR (section 9.6.2) with a string argument defined in the program, the
program will be referenced for the sake of the ERRM command until ERRO is executed
or some subsequent error generates a new error message.

If you want to delete a port variahle while keeping a copy of its stored object, you must
recall the object and either store it in a glohal variable or another port variahle, or exe­
cute NEWOB (section 11.6) with the object in level 1. This creates a new copy of the
object and unrcferences the port variahle. Then you can use PURGE to delete the vari­
ahle.

6.4.3 Libraries
Commands are named objects that arc stored for execution only, and which an: nol
availahle for recall or modification. A collection of commands is called a library.
Lihraries are objects (section 3.4.11), which allows you to move them around within the
HP 48, primarily to transfer them from a personal computer or from HP 48 to HP 48.
When you are dealing with a library as an ohject, the commands that the lihrary
includes are not visible or accessible. To activate the contents of a library, it must he
stored in a port and attached to a directory. On the stack, a library object is displuyed
simply as Library n: title, where n is the unique library ID number assigned to the
library, and title is its text title.

All of the HP48's built-in commands and program structure words (section 9.2) are
contained in libraries permanently stored in built-in ROM. The details of their organi­
zation into libraries is not important; the only place where the division manifests itself is
in the various error numbers, the leading digits of which identify the library in which the
error occurred.

Unlike any of the built-in HP 48 command libraries, an added library must be stored in
a port in order for its commands to be available. In a plug-in ROM card, the libraries
are permanently stored. In a port containing RAM, including port 0, you can store a
library using STO. The "name" required by STO in this case is just the (real) port

-173-

6.4 Storing Objects

number. You may also use any number tagged with the port number, such as :0: 123;
this allows STO to use the same port-tagged library ID as used by RCL to recall a
library from a port to the stack, or by PURGE to delete the library.

Imagine that you have a library on the stack, ID number 999. (If you have the HP48
Insights Program Disk, you can transfer this sample library from your personal computer
to the HP 48, and follow along with the example.) To store the library in port 0, enter a
0:

{ HOME}

4:
3:
2: L i br ar':l 999: HP48111
1: 0
.. IITImDIDDIDIImIIllDI

Press ISTOI , then @::iJ IUBRARVI- PORTS- = :0:= :

{ HOME}

4:
3:
2:
1 : 1I:[[I1ImI1llDI __ _

The ~ABC~ and ~DEF~ labels correspond to the port variables created in the ongoing
example, in section 6.4.2.1. The new entry ~999~ indicates that the library has been
stored in port O. However, at this point you still don't have access to the commands in
the library. First, you must turn the HP 48 off, then on. You will observe that this
causes a system halt (section 6.6), so you should store any objects on the stack that you
want to keep before turning the HP 48 off. The system halt occurs when the HP 48
detects that a library has been added to a port; during the system halt operation, the
HP 48 builds a table of all of its current libraries that it uses to find the libraries later.

The last step in making library commands accessible is to attach the library to a

-174-

Storing Objects 6.4

directory. When a library is attached to a directory, the libraries commands are accessi­
ble for execution or entry into a composite object whenever that directory is in the
current path (section 6.1.2)--just like the global variables in that directory. Each direc­
tory may have one library attached to it, except for the home directory, which may have
any number of attached libraries (including the built-in libraries, which are permanently
attached there). To attach a library to a directory, you make that directory the current
directory, then execute id ATIACH, where id is the library's ID (expressed as a real
number). The library does not need to be present when ATIACH is executed, but the
attachment will have no consequence unless the library is installed in a port.

In the current example, execute HOME DIR1 to make DIR1 the current directory, then
execute 999 ATIACH (the menu key for ATIACH is in the second page of the ~
IMEMORYI menu). Now press ~ILlBRARYI :

{ H[]ME DIF:l }

4:
3:
2:
1 : Climill ____ _

The entry ~HP48I~ is now present in the menu, corresponding to the newly attached
library In addition to the library ID, a library contains a unique library title, a text string
that describes the library. The first four or five characters of the title arc used for the
library menu label. To see the full text of the title (up to 23 characters), use ~IVIEWI:

HP48Insights Test Lib

Climill ____ _

The tab on a library's menu key label indicates that the key activates yet another menu.
Press ~HP481~ :

-175-

6.4

{ HOME DIFil }

4:
3:
2:
1 : m::o ____ _

Storing Objects

This menu is created from the objects defined in the library. Pressing ~ RPN?~ returns
the string "I love RPN!". If you press @2llJlJ~RPN?~, the list { RPN? } is placed on the
stack. The object RPN? within the list (you can take it out of the list with OBJ~) is an
XLIB name object (section 3.6.3). It is similar to a global name, in that executing it exe­
cutes the object stored with the name. However, you can not recall or view the stored
object itself.

An XLIB name object docs not actually contain the text of its name, which is stored in
the library. You can sec this by purging the library (:0:999 PURGE); if you do so, the
list on the stack becomes { XLI B 999 0 }. Since the library is unavailable, the HP 4~
docs not know the XLIB name text, and reverts to displaying two number codes that arc
part of the XLIB name object. The two numbers show that the namc corresponds to
command 0 in library 999. The fact that XLIB names contain number codes rather than
text makes them more compact and speeds up execution of library commands.

Libraries intended to be attached to the home directory (which makes their commands
universally available) usually attach themselves to the home directory automatically.
This is useful because home directory attachments are cleared by a system halt, unlike
subdirectory attachments. During a system halt, each library is given a chance to exe­
cute its configuration program, which can prepare any special HP 48 resources needed by
the library, including attaching the library to a particular directory. Many plug-in appli­
cation cards contains several libraries, each of which automatically attaches itself to the
home directory. To access the card's programs, therefore, you have only to insert the
card in a port and turn the calculator on.

[When you transfer a library from a personal computer to the HP 48, you can not
transfer the library directly to a port, but must transfer it first to a global variable.
Then you can recall the library to the stack and store it in a port. It is generally a good
idea not to leave a copy of a library in a global variable after you have copied it to a
port, not only to conserve memory, but because the Recover RAM process associated
with an accidental or deliberate memory reset ([Q1i] - [AJ - [£J) does not work well

-176-

Storing Objects 6.4

when there are libraries stored in global variables, because that makes it difficult to
distinguish between user memory and port 0.)

6.4.3.1 Other Library Commands
In addition to STO and ATIACH, the following commands are associated with libraries:

• PURGE. To remove a library from a port, execute :n:1D PURGE. As in the case of
port variables, you will be unable to purge a library if it is referenced in any way
(Object in Use). In addition to the other ways that an object can be referenced, a
library is referenced when it is attached to the home directory; you must detach it
(see below) before purging.

When you purge a library, you may see thc display jump briefly. This is caused by
the movcment of display memory arising from the removal of an entry in the HP 48's
internal table of libraries; it is quite harmless.

• DETACH. The inverse of ATIACH is DETACH, which detaches a library (specified
by numher) from the current directory. A common reason to detach a library is to
disahle the commands in that library. For example, a lihrary might define a new
meaning for SIN; to use the huilt-in version you must either detach the library or
change to a directory in which the library is not in the current path.

• LlBS. This command catalogs the libraries attached to the current directory, return­
ing for each lihrary the full library title, library number, and the number of the port
containing the lihrary. In any directory except the home directory, there ciln only be
one attached library, so LlBS returns a list of three clements:

{"Title" library-number por/-number}

If no lihrary is attached, LlBS returns an empty list. In the home directory, the list
can contain a multiple of three clements, with one group of three for each attached
library. Note that LlBS provides a means for viewing a library'S full title when the
title is longer than 22 characters. You can also recall a library to levelland use ~
IEDITI or [2J ; this copies the library title to the command line where you can use ~to
reveal the full title. (Note that you can't actually edit the library-- pressing IENTERI

just enters the title characters.)

6.5 Name Resolution
The figure below is a diagram of HP 48 memory showing schematically all of the named
objects we have created in this chapter's ongoing example. The figure also has an entry
for the built-in command libraries, to show where they fit logically. Finally, the local
memory containing the local variables local1 and local2 created in the preceding section

-177-

6.5 Storing Objects

is shown associated with the program HILL (here we are assuming that that program is
still suspended).

User Memory
,-----------1

I ..•.••. j DIR2 DIR1 ABC DEF

/

/

/

/

DIR ...

/ I
/ I

/

/

I

DIR ... 123 456

-

-
HILL ABC DEF1 ABC1

«» 987 -456 -123
I

-.J
Local Memory
1:----:1

ROM
I:--:l

•• 1·
Built-in

Libraries

Port 0

Ir -----;l
999 DEF ABC

Library 567 234

i"" ...
RPN?

Ilove ... I

L - - - -.J

Example Memory Organization

The figure is helpful in explaining the details of HP 48 name resolution, the process by
which the HP 48 creates name objects and finds named objects. Name creation and
name finding are ~imilar but distinct processes. The first takes place when a command
line is entered and the HP 48 creates name objects from the command line text. The
second happens when a name is executed or recalled, and the HP 48 must find the
stored object associated with the name.

-178-

1
(

!

Storing Objects 6.5

6.5.1 Command Line Entry
A series of non-delimiter characters III the command line that does not start with a
numbcr character (digit or fraction mark), and is not enclosed by string quotes"" or tag
colons::, is presumed to be a name. The type of name object creatcd by ENTER is
determined by a search through existing named objects for a name that matches the
command line name. The precedence of the search is as follows:

1. If the name starts with a "~,, character, it is entered as a local name.

2. If the name is entered within a local variable structure (section 9.7) in the com­
mand linc, and matches onc of the names dcfined for that structure, the name is
entered as a local namc.

3. If there is a local memory prcsent that contains a local variable with a matching
name, the name is entered as a local name.

4. If the namt.: matches a global variabk anywherc in the current dirt.:ctory, the namt.:
is entert.:d as a glohal name.

5. If the name matches a command name in a lihrary attached to tht.: current dirt.:c­
tor.y, the name is t.:ntcred as an XLIB name.

6. The prt.:ceding two steps arc applied to the parent directory, and its parent, and so
on back to the home directory. If tht.: name is matched, it is entered as a glohal
namt.: or an XLIB name, as appropriate. If the search proceeds to tht.: home
directory, all of the libraries attached thert.: are searched.

7. If the name matches a built-in command name, the name is replaced with tht.:
built -in object.

8. If the name is not matched in any of the preceding steps, it is entered as a global
name .

• Examples with DIR1 as the current directory, and the program HILL currently
suspended):

• ~ X « X Y » local1 ~local3 ABC. When this command line is entered, X and
local1 are entered as local names. The first X is local because it is one of the local
names defined by the arrow; the second X because it is included within the local
variable program. local1 is entered as a local name, because local1 is a local vari­
able in the local memory associated with the suspended program HILL. ~local3 is
also entered as a local name because its first character is ~; it doesn't matter if there
is a corresponding local variable. ABC is entered as a global name, because it is
matched by a global variable in the parent of the current directory. Y becomes a
global name because it is not matched by any global or local variable, library

·179-

6.5 Storing Objects

command, or built-in command.

• ~ DEF1 « RPN? DEF1 » DEF1. Here the first two DEF1's become local names,
even though DEF1 is a global variable in the current directory, because DEF1 is
defined as a local name in the local variable structure. The third DEF1 is entered as
a global name, since it is not entered within the local variable program. RPN? is
entered as an XLIB name, since it is not one of the program's local names, and is
first matched by the library command in the library attached to DIR1.

• SIN RPN? ~ SIN RPN? « RPN? SIN» COS. The first occurrence of SIN is
entered as a command name; the first occurrence of RPN? is entered as an XUB
name. However, the subsequent uses of these names are entered as local names,
because their assignment by ~ takes precedence over their presence as built-in or
library command names. COS is entered as a built-in program object. The restric­
tion that global names can not match built-in command names does not apply to
local names. [This restriction is a property of the command line parser; the RPL
language puts no such restriction on global names in general. The restriction is pri­
marily to enforce syntax rules for algebraic expressions.]

The rules described here for command line entry also apply to execution of OBJ~ (or
STR~) on a string object, and to the processing of object files that arc transferred to the
HP 4S via an ASCII Kermit transfer.

6.5.2 Executing Name Objects
When a name object is used to find the object stored with that name, the process of
searching for the named object is similar to that used during command line entry. How­
ever, since the type of name object is already known, the search can be more restrictive:

• For global names, the search is through user memory, starting in the current direc­
tory. Whether the search extends to parent directories depends on the nature of the
operation using the name. For simple execution of the name, and for use with RCL,
the search is made first in the current directory, and continues if necessary through
all parent directories until the name is matched. For all other commands, the search
is restricted to the current directory. The first variable checked is the leftmost vari­
able in the VAR menu, nominally the newest variable unless the order has been
changed by ORDER. You can achieve faster program execution by placing the glo­
bal variables a program uses at the start of the current directory.

• For port names, the search is made in the port identified in the name, unless the &
symbol is used. In that case, the search starts in the highest available port and con­
tinues through lower-numbered ports and then into the current directory until a
match is made.

-180-

Storing Objects 6.5

• For local names, the search extends through current local memories, starting with
the newest.

• For XLIB names, no name matching is necessary; the stored object is found by
means of the library and command numbers stored in the XLIB name, and the table
of object locations that is part of each library.

Notice that the use of one type of name will never find an object stored with another
type of name (except for the case of &-tagged port names).

The resolution of XLIB names is usually significantly faster than that of global and local
names. Resolving a local name is usually faster than resolving a global name, because
local memories typically contain only a few variables. If a program stored in one direc­
tory frequently uses a variable in a parent directory or in another branch of user
memory altogether, the program will run faster if it recalls the remote object once and
stores it in a local variable, then retrieves it from the local variable for each subsequent
execution. Similar considerations apply to objects retrieved from ports 2-33, which must
be copied hefore execution (section 6.4.2).

6.5.2.1 Resolution Failures
When you execute a glohal name for which no corresponding global variable exists any­
where in the current path, the HP 4~ just returns the name to the stack (this property of
global names is central to the HP 48's symbolic algebra capahilities). However, in all
other cases of name ohject resolution, an error is reported if no stored ohject is found.
The error depends on the type of name, and the particular use:

Type

Global name
Port name
Local name
XLIB name

Execution
(EVAL, etc.)

no error
Undefined Name
Undefined Local Name
Undefined XLiB Name

'Unless the variable is a non-empty directory.

"If the port vdfiable already exists.

Recall
(RCL, GET, etc.)

Undefined Name
Undefined Name
Undefined Name
Bad Argument Type

Store
(STO, PUT, etc.)

no error*
Object In Use**
Undefined Name
Bad Argument Type

The recall and store errors for XLIB names occur because those operations are not
allowed, regardless of whether there is a corresponding library command.

·181-

6.5 Storing Objects

6.5.3 Path Names
When one directory is current, but you want to recall a variable in another directory
that is not in the current path, you can switch the HP 48 to the second directory so that
the variable becomes available. If you save the original path first (using PATH), you can
easily return to the original directory after using RCL. However, this procedure is a lit­
tle cumbersome for repeated use, so the HP 48 provides an alternate method called a
path name. A path name is an extended form of a variable name, where the variable's
global name is entered in a list, preceded by the names of the directories that make up
the path to the variable's directory. In general, a path list has this form:

{ directory 1 directory 2 directoryn variable}

The first object in the list can be HOME or a directory name; of the remaining objects,
all but the last must be directory names. The path defined by the directory names can
he any path that will lead to the desired directory, hut usually it is most convenient to
start the list with HOME so that the path name will be usahle no matter what directory
is current.

U sing a path name as an argument for RCL, then, is equivalent to 1) saving the current
path, 2) switching to the directory defined hy the path name, 3) recalling the named
variahle, and 4) restoring the original path. For example, if in our example user
memory DIR1 is the current directory, recalling ABC returns 123, the value of ABC in
the home directory. However, {HOME DIR2 ABC} RCL returns 654, the value of
ABC in the DIR2 directory.

The HP 48 makes no special provision for the usc of path names as described so far hy
EVAL, since the ordinary hehavior of lists with EVAL makes path names suitahle argu­
ments. But notice that { HOME DIR2 ABC } EVAL, for example, is not quite
equivalent to {HOME DIR2 ABC} RCL EVAL:

• {HOME DIR2 ABC} EVAL switches to the DIR2 directory (hefore executing
ABC); {HOME DIR2 ABC} RCL EVAL docs not.

• {HOME DIR2 ABC} EVAL evaluates the !lame ABC, whereas {HOME DIR2
ABC} RCL EVAL evaluates the object stored in variable ABC. The difference is
significant if the stored object is a list, a directory, or an algebraic ohject (sec section
3.3).

Also, a list argument for EVAL can contain any arguments, whereas a path name for
RCL can contain only HOME and global names.

There is yet another extension to path names, which does apply to EVAL as well as to
RCL. When one of these commands is applied to a path name list that is tagged with

-182-

Storing Objects 6.5

port number 0 or 1, the command is directed to the specified variable in a directory
stored in a port variable. That is, the first name in the list is the name of a port variable
that itself contains a directory. The remaining names specify a path within that direc­
tory to the desired variable. (In this case, you do /lot want the path name list to start
with HOME.)

For example, try copying the directory DIR2 from our sample home directory to port 0:

~IHOMEI ~~DIR2~ :O:DIR2P ISTOI

Now you can recall the contents of the variable ABC in the port variable by executing

:O:{ DIR2P ABC} RCL o~· 654.

This feature is especially useful when you have saved a copy of a large directory in a
port variable, and want to retrieve the contents of a particular variable, but there isn't
enough frec memory to copy the dircctory to user memory.

You can also use the "wildcard" tag & for path names. With that tag, the HP 4g
searches for the specified port variable in all of the the ports, starting with the highest
numbered and continuing down through port 0 if necessary. If it is not found in any
port, the untagged path name is used to find the variable. In the latter case, EVAL
switches to the directory specified by the path name--if the directory is found in a port
variable, then the current directory does not change.

6.5.4 Archiving Memory
In addition to storing individual objects in port variables, the HP 48 allows you to store a
copy of user memory, including current alarms and key assignments, in a port variable.
This archival copy of memory can then be used to restore the calculator to a previous
state, especially after an accidental or deliberate memory loss, or to copy the contents of
one HP 48 into another. You can make an archival copy quite safe by saving it in an
independent RAM port, then setting the read/write switch on the card to read-only
(archiving to a personal computer via the serial port is also a good alternative).

The ARCHIVE command takes as its argument a port number, then creates a port vari­
able in the specified port, to store a replica of the home directory. A good choice for
the port name is one that represents the date on which the archive was made, such as
NOV2594 or APR2193, to help you choose among multiple archive copies.

-183-

6.5 Storing Objects

Once an archive is made, you can replace the current user memory with the archival
version by executing port-name RESTORE, where port-name specifies the port variable
created by ARCHIVE. RESTORE terminates by performing a system halt, so that the
display blanks momentarily then shows an empty stack, with the MTH menu and the
path { HOME}. Note: RESTORE begins by executing the equivalent of PGDIR on the
home directory. This can be very time consuming when user memory is large and con­
tains a lot of subdirectories. In such cases, you can save time by performing a memory
reset ([QRJ - [AJ - [IJ , with the " NO " option) before executing RESTORE--unless, of
course, your archive is in Port 0, which is cleared by the memory reset.

If you recall the contents of a port variable created by ARCHIVE, you will sec what
appears to be an ordinary directory object. However, this directory is unusual in that it
may contain a "nameless" subdirectory (if you usc @=ijIEDITI to copy the directory to the
command line, you can see a DIR entry with no name preceding it). The subdirectory
contains three variables: Alarms, UserKeys, and UserKeys.CRC. The first two, as you
might guess, contain the alarm catalog and the user key assignments; UserKeys.CRC
contains a memory checksum that is used by the HP 4X to verify the integrity of the key
assignments. The alarms and key assignments arc kept in the nameless subdirectory in
order to prevent their heing accidentally or deliherately edited into a form that might
corrupt the HP4X system.

ARCHIVE only saves the contents of user memory; in particular, it docs not save the
current flag values or thc contents of port 0. The program XARCHIVE listcd hclow
demonstrates a method of cxtcnding ARCHIVE to save thcse ohjects as wcll. XAR­
CHIVE takes a real numhcr 0-33 as its argument and calls thc program DATENAME to
crcate a port name. Thc name has thc form Il :mmmdd, whcre Jl is the argumcnt, mmm
is a three letter abhreviation for the current month, and dd is the two-digit day of the
month. Then XARCHIVE creates a temporary directory archtemp, moves all of the port
o objects to that directory, and also saves the current flag values there. Furthermore,
XARCHIVE creates a program fixup in the home directory, which is also saved as part of
the archive. After the archive is made, XARCHIVE moves the objects back to port 0,
and deletes the temporary variables. XARCHIVE requires enough free memory to make
a copy of the largest port () object; if it runs out of memory, it restores the contents of
port () and deletes temporary variables. After XARCHIVE is finished, you should turn
the HP 48 off then on to reattach any port ° libraries.

To later rebuild HP 48 memory from the archival memory made by XARCHIVE, execute
RESTORE as usual using the port name. of the variable created bY,XARCHIVE. Then
press IVARI -FIXUP-. The latter step restores the s'aved port () objects and flags, and
purges the temporary variables, including fixup. (It is not possible to combine
RESTORE and fixup into a single program, because RESTORE performs a system halt,
preventing execution of any program objects following it.) If the archive includes any

-184-

Storing Objects

XARCHIVE Ex/ended Archive 5645

level 1

"10"
n

« DEPTH PATH RCLF 0 - m d pie
« IFERR HOME STD

»

DATENAME m -TAG
« WHILE 0 PVARS DROP DUP SIZE

REPEAT 1 GET
IF DUP OBJ- DROP TYPE NOT
THEN DUP DETACH
END PURGE

END DROP
archtemp Ilags STOF -PO

» 'Iixup' STO
'archtemp' DUP CRDIR EVAL
« WHILE VARS DUP SIZE 2 >

REPEAT 1 GET DUP RCL
OVER PURGE SWAP

IF OVER TYPE 16 SAME
THEN DROP 0
END 0 -TAG STO

END DROP CLVAR HOME
{archtemp fixup} PURGE

» '-PO' STO 1 'ilags' STO
THEN 1 'e' STO
ELSE

IFERR
WHILE 0 PVARS DROP DUP SIZE
REPEAT 1 GET

DUP RCL OVER OBJ- DROP
IF DUP TYPE NOT
THEN DUP HOME DETACH

archtemp '" L" SWAP + OBJ-
END STO PURGE

END DROP
IF m TYPE NOT
THEN DUP PURGE
END ARCHIVE

THEN 1 'e' STO
END -PO

END P EVAL
IF e
THEN DEPTH d - 1 -

DROPN ERRN DOERR
END

-185-

Save the port, depth, path, flags, signal.
Trap errors.
Tag the name with the port number.
Program for use after RESTORE:
Get the next port 0 name/number.
If it's a library,
detach it.
Purge the object.

Restore archived flags and port 0 objects.

Create temporary directory.
Program to move objects back to port 0:

Recall and purge the variable.
If it's a library,
Substitute a number for the name.
Store in port O.

Delete temporary variables.
Save program and flags in archtemp
Signal that an error occurred.
No error so far.
Trap error in moving objects or archiving.
If there are port 0 objects ...
Get the next port name.

If the object is a library,
then detach it, and
make a name from its number.
Store in arch temp, purge from port.

Purge existing archive.
Make the new archive.
Signal that an error occurred.
Return objects to port O.
Restore path.
If an error occurred,

clean up the stack and report.

6.5

6.5 Storing Objects

DATENAME Create a Name from the Cunent Date 3A18

level 1 I level 1

,j. J,nmnldd'

« RCLF -42 CF DATE TIME TSTR Get the time string.

"JAN FEBMARAPRMA Y JUNJ ULAUGSEPOCTNOVDEC"

OVER 5 6 SUB OBJ- Get the month number.

1 - 3 * 1 + DUP 2 + SUB Get the month name.

SWAP 8 9 SUB Get the day number.

STD + "'" SWAP + OBJ- Make the name.

SWAP STOF Restore flag -42.

»

port 0 libraries, you should turn the calculator off then on to reattach those libraries.

XARCHIVE also lets you substitute the string argument "10" instead of a port number.
In that case, the arehival user memory is transmitted as a backup object (section 3.4.12)
to either the serial or infrared output port, for storage on a personal computer or
another HP 41{. To rebuild memory from an external archive, you must transfer the
backup object into a global variable via the wired or infrared i/o port. Then recall the
backup object to the stack, and execute RESTORE followed by fixup, as before.

6.6 Calculator Resets
The HP 41{ provides a special operation, called a memolY reset, that clears all global and
port () variables and restores all of the calculator's default modes. Part of the memory
reset is a system halt, that by itself resets the HP 4Ws execution without affecting stored
objects.

A system halt is obtained by pressing [Qf[J and the [gJ menu key together. This opera­
tion does all of the following:

• aborts all current execution;

• clears the stack, the return stack, all local memories, last arguments, the recovery
stack, the command stack, and the graphics display;

• turns off user mode;

• sets the last error number to zero and the last error message (section 9.6) to an
empty string;

• detaches all libraries currently attached to the home directory, and executes the con­
figuration programs (section 6.4.3) of all libraries in the various ports;

-186·

Storing Objects 6.6

• reestablishes the home directory as the current directory;

• activates the MTH menu;

• leaves global or port variables, alarms, and key assignments unchanged. All flags are
also left unchanged, except flag - 62, which is cleared (see section 7.2).

A system halt is performed automatically when you turn the HP 48 on, if you have
stored or removed any libraries from any ports since the previous time the HP 48 was
turned on, or if you have inserted or removed memory cards, or changed a RAM card's
write-protect switch position. This ensures that there are no references (section 6.4.2.2)
remaining to library objects that you may have removed.

A memory reset, for which you press the three keys [Q[] , [AJ , and W all together,
starts by executing a system halt. Then the HP 48 displays

Try To Recover Memory?

If you sec this display when you turn the calculator on, or at any other time when you
have not deliberately performed a memory reset, it indicates that the calculator has
detected a corruption of memory contents such that it can not continue normal opera­
tion without at least a partial memory reset. This corruption can be caused by a
hardware fault, including the effects of static electricity, by the execution of SYSEVAL
(section 3.10.1) with an incorrect system address, or just by defective built-in or add-in
software.

If you choose '" NO", , the HP 48 performs acorn plete reset, deleting all global variables,
port 0 variables, key assignments, and alarms and resetting all flags to their default
values. The calculator displays Memory Clear when it is ready to resume manual
operation.

If you choose ",YES", at the Recover RAM prompt, the HP 48 attempts to recover or
restore as many user memory and port 0 variables as it can by scanning through
memory for recognizable objects. If it detects a valid user memory, then it can usually

-187-

6.6 Storing Objects

restore it unchanged, except that key assignments and alarms are always lost. If it finds
invalid objects, it discards them and rebuilds as much of the user memory structure as it
can. In some cases when the home directory itself is corrupt, subdirectory objects there
can be reconstructed, but they lose their names. The HP 48 makes up variable names for
these directories, naming them 0.01, 0.02, and so forth. When the automatic recon­
struction process is finished, the standard display is restored. Then you can inspect the
VAR menu to determine how much of user memory is intact.

During variable reconstruction, the HP 48 looks for library objects in memory to try to
determine where port ° begins. Unfortunately, if it encounters a library that was stored
in a global variable, it takes that as the start of port 0, which means that some part of
user memory will be discarded. For this reason, you should not keep libraries in user
memory for long term storage--store them in a port instead.

-188-

1

7. Customization

One of the strongest features of the HP 48 is its extensive customization ability. That is,
for the sake of a particular application, or just for general use, you can turn the HP 48
into a highly personalized tool, tailored to the computations and interactions that you
prefer. The customizing facilities of the HP 48 are as follDws:

• System flags give you on/off control over the many HP 48 modes.

• Custom menus enable you to augment the built-in menus with your own specialized
menus.

• Key assi[;1lments change the actions of any of the shifted or unshifted keys.

• The vectored ENTER mechanism allows you to redefine the way the command line
interprets its entries, and to change what the HP 48 docs after each keyboard action.

The hasis of all of these mechanisms is the HP 48's programming capability, which
allows you to define complicated procedures to associate with keys and menus. In this
chapter, wc will concentrate on the cxplicit customizing technilJues, including some pro­
grams that illustrate the methods as well as serving as programming examples.

7.1 Modes and Flags.
A mode is a calculator setting that acts as a form of global argument for certain opera­
tions, that saves you from having to supply that argument every time you execute the
operations. A classic example of a mode, common to most scientific calculators, is the
trigonometric angle mode, which determines how the trigonometric functions intcrpret
their arguments and resuits. The sine function is defined mathematically in terms of
dimensionless arguments expressed in radians; to compute the sine of an angle
expressed in degrees, you must multiply the argument by 'IT/180 before applying the sine
algorithm. On the HP 48, you can skip the multiplication by setting the angle mode to
degrees, in which the SIN command assumes that its (real) arguments are entered in
degrees. Similarly, the ASIN command returns its (real) results in degrees, performing
the multiplication by 1801'IT automatically.

The current setting of a calculator mode is recorded by means of one or more flags,
where a flag is a memory location that contains one binary bit. For a simple "on/off"
mode like the ticking clock display, only one flag is needed. A single flag is usually con­
sidered to be set or clear--if the flag bit is 1, the flag is set; if it is 0, the flag is clear. For
a multi-state mode like the angle mode, which has three settings, two or more flags are
needed. In these cases the flag values taken together make up a binary number with
two or more digits, ranging from the two-bit number that encodes the angle mode up to

-189-

7.1 Customization

the six-bit number that records the binary integer wordsize.

Some HP 48 modes are controlled by flags that are only accessible to the operating sys­
tem. You must switch these modes with manual operations; there is no programmable
control. Examples of these modes are the stack recovery or command stack
active/disabled modes, which are selected by means of modes menu keys ",STK", and
",CMD", ; command line insert/replace, selected by the ",INS", menu key in the EDIT
menu, and the Matrix Writer entry-order mode, controlled by the ",GO-", and '" GOI '"

menu keys.

The majority of HP48 modes are represented by llser flags, so called because you can
control their values manually and in programs. There are 128 user flags, numbered
from - 64 to - 1 and + 1 to + 64. Flags in the range - 64 to - 1 are used for HP 48
modes and signals. Signal flags are used to convey the nature of certain results, such as
floating-point overflow, when the usc of an additional stack result would be incon­
venient. There are a few unused flags in this range, which is ordered to keep related
nags in groups numbered starting with a multiple of 5, plus 1. Flags 1-31 arc strictly
reserved for users' programs. The remaining flags 32-64 are nominally reserved for
lihraries (the HP Solve Equation Lihrary--which is huilt into the HP 48(; /(;X--uses nags
60-(l2), hut you can usc any of these nags as long as they don't connict with the lihraries'
usc.

The least commonly altered modes, such as the single-or-douhle key alpha lock, or the
vectored ENTER mode (section 7.4), can only he selected by means of their resJlective
numhered flags. More common modes like the ticking clock display or symholic execu­
tion (section 3.5.6.2) can be user nag controlled hut also have keyboard or menu keys
with mnemonic labels (e.g. ",ClK", and "'SYM"'). Finally, the most important modes have
dedicated commands, like FIX and DEG, which are programmable as well as mnemonic.
(The relative importance of the various modes was decided by the designers--if your
favorite mode was relegated to a mere flag, you can always write a little program to
alter the mode, and give it a mnemonic name).

In the HP 48, the default state of all of the system mode flags is clear, except for the
binary integer wordsize flags - 5 to - 10, which are set. This means that in general, a
clear mode flag means "do the default behavior" and a set flag means "do the non­
default behavior" for the affected operations. Thus if you're trying to remember
whether to set or clear a particular flag in order to select a mode, you can use the
calculator's defaults as a guide (assuming that youcan remember those).

-190-

Customization 7.1

7.1.1 Flag Commands
The commands you need to select a mode by means of its flags are SF (Set Flag) and
CF (Clear Flag), which set and clear the flag specified by a real number argument. For
example, - 3 SF turns on numeric evaluation mode; - 3 CF turns it off. You can also
determine the state of a flag; for example, 9 FS? returns a 1 to the stack if flag 9 is set,
or a 0 otherwise. The real numbers 0 and 1 used in this context are called stack flags,
because they can represent the binary values of a user flag so that you can manipulate
those values on the stack. The FS? command in effect copies a user flag value to the
stack. Stack flags are also useful in programming as logical false (0) or tnte (1) values
(section 7.1). Note that set, tnte, and 1 arc synonymous, as are clear,false, and o.

In addition to FS?, the HP 48 also provides FC?, which returns tnte if a flag is clear;
and FS?C and FC?C which test a specified flag and then clear it. You can also recall
the values of all 128 flags by executing RCLF (ReCalL Flags). This command returns a
list of the form { #11l #n}. #m is a 64-bit binary integer representing flags -64 to -1;
its leftmost, or most -significant hit corresponds to flag - 64, and its least -significant hit is
tlag - 1. #Il similarly represents flags I (least-significant) through 64 (most-significant).
The principal usc of RCLF is to record the values of the flags so that those values can
he restored later hy the complementary command STOF (STOre Flags). STOF takes a
list like that returned by RCLF and sets all 128 flags according to the values of the two
hinary integers in the list. STOF will also work with a single binary integer, which is
taken to represent the new system tlag settings. Examples of using RCLF and STOF arc
shown in the programs ASN41 (section 7.2.1.1) and XARCHIVE (section 6.5.4).

STOF and RCLF provide a convenient means for applying individual bit operations to
binary integers. The programs listed next allow you to set, clear, and test a specified bit
in a binary integer, where the bits arc numbered from 0 as the least significant (right­
most) bit.

SB Set Bit 8DB7

level 2 level] I level]

#n m u #n'

« RCLF ROT STOF Swap system flags and binary integer.

SWAP NEG SF Set the bit.

RCLF 1 GET Get the new integer value.

SWAP STOF Restore the original flags.
»

-191-

7.1 Customization

CB Clear Bit AC26

level 2 level 1 I level]

#11 III '1 #n'

« RCLF ROT STOF Swap sy.;tem flags and binary integer.

SWAP NEG CF Set the bit.

RCLF 1 GET Get the new integer vdlue.

SWAP STOF Restore the original flags.

»

BS? Bit Set? 822A

lL~·el 2 lel'el 1 I lL~'el]

#11 III U· pag

«

RCLF ROT STOF Swap sy.;tem flags and binary integer.

SWAP NEG FS? Test the bit.

SWAP STOF Restore the original flags.

7.1.2 The Modes Input Form
~ IMODESI activates an input form (section 4.5) dedicated to calculator modes. The
most frequently changed modes are presented in the main input form display:

c::mID CALCULtHOFi MODES 00::::::::::::
NUME:EFi FOFiMAT: §I!]
ANGLE MEASUFiE: Degrees
COOFiD SYSTEM: Rect angu 1 ar
tL. E:EEP CLOCK FM,

CHOOSE NUME:EFi DISPLAY FOFiMAT
_[![lJIFj_limmIm!l~

The three choose fields are for multi-state modes; for ANGLE MEASURE:, for example,
there are three choices: Degrees, Radians, and Grads. The three check fields activate
(when checked) the error beep, the status area date/time continuous display, and the

-192-

Customization

choice of the comma as the real number fraction mark.

Other flag-controlled modes are accessible in the flag brolVser, started by ~ FLAG ~ :

:::U:::2::3 SYSTEM FLAGS ::::::::::::::::::::
01 General so I ut ions
02 Const ant "* SYlYlb
03 Funct ion "* sYlYlb
1~ P aYI"I)ent at end
19 "*"12 "* I.}ect or .,J..
__ ~_mmHlIiJ3IIII

7.1

This is a comhination choose/check hox with an entry for each hi-state mode system
flag. "Checking" a selection with = ~CHK- sds the flag that is numhered at the left edge
of the display. Also, the mode description changes to characterize the new state. When
checked, the General Solutions mode highlighted in the preceding display changes to
show its alternate mode:

::@fmmmf SYSTEM FLAGS m:;::;;m:m
01 Princi al value
02 Const ant "* SYlYlb
1)3 Funct ion "* s':llYIb
1~ P ayr(lent at end
19 "*"12 "* vect or .,J..
__ ~_mmHlIiJ3IIII

As in other choose boxes, you can move the highlight up and down with the cursor keys;
@:.iJ [KJ and @:.iJ ClJ move five lines at a time; and ~ us:: and ~ ClJ move to the begin­
ning and end of the list, respectively. Pressing one of the digit keys [Q] through W
moves the selection highlight to the first flag whose two-digit number starts with that
digit.

7.1.3 System Flag Assignments
Table 7.1 summarizes the HP48 mode and signal flags, showing the modes associated
with setting each flag.

-193-

7.1 Customization

Table 7.1. HP48 System Flags

Flag Name

Symbolic Mathematics
- I Principal Values
-2 Symbolic Constants
-3 Numeric Execution

Binaty Imeger Math
-5 to -10 Binary Integer Wordsize
-II. - 12 Binary Integer Base

Floating Point Math
-IS. -16 Coordinate System
-17. -18 Trigonometric Angle
- 19 Complex ~V2
-20 Underflow Exception
-21 Overflow Exception
- 22 Infinite Result Exception
- 23 :-':egative Underflow
-24
-25
-2()

-27-r

I/O and Plol/illg

Positive Underflow
Overflow
Infinite Rcsult
Symbolic Complex Display

- 2St Simultaneous Plots

-29t Axes Control

-3~ Function Plot
-31 Curve Filling
-32 XOR Cursor
-33 I/O Device
-34 Printer Device
-35 Binary I/O
-36 RECV Overwrite
-37 Double Space Printing
-38 Lincfeed
-39 No Kermit Messages

Time Management
-40 Ticking Clock
-41 24-Hour Clock
-42 DMY Date Mode
-43 Rescheduling Repeat Alarms
-44 Save Acknowledged Alarms

Meaning when Set

"Solving" returns only principal values
Symbolic constants evaluate to numbers
Functions return numerical results

Encode binary integer wordsize
Specify base

Specify coordinate system
Specify angle mode
~V2 create complex numbers
Underflow is an error
Ovcrflow is an crror
Infinite result is not an error
:-':cgative underflow occurred
Positive undcrflow occurred
Overflow occurred
Infinite result occurred
(A,B) displays as A+B*i

Multiple expressions in EQ list are plotted simultane­
ously
Do not draw axes in a plot made from the plot input
form
Equations y =f(x) plot y independently
No curve filling
Graphic cursor XOR's with picture
I/O is directed to the IR port
Printer output directed to the serial port
File transfer in binary mode
RECV overwrites variables of same name
Printed text is double-spaced
Suppress auto-insertion of linefeeds
Suppress display of Kermit messages

Date and time are displayed
Times in 24-hour format
Dates in DD/MM/YY format
Unacknowledged repeat alarms not rescheduled
Acknowledged alarms remain in appointment list

-194-

7.2 Customization

If you prefer, you can disable single-key user mode by setting flag -61. In that case, a
single press of @J] IUSRI activates user mode, much like the behavior of the IUSERI key on
the HP41, which was the original upon which HP48 user mode is modeled (single-key
user mode was copied from the HP 71B). The state of user mode is reflected in flag
- 62; setting that flag turns on user mode, clearing it turns it off, and - 62 FS? indicates
whether the mode is active.

7.2.1 Single Key Assignments
To make an individual key assignment, the command ASN takes the object to be
assigned to a key from level 2, and a keycode number rc.p from level 1:

• The digit r is the key row counting from 1 at the top row (menu keys), and c is the
key column, counting from 1 at the leftmost column. The digit p represents the key
plane (shift):

Shift Planep

nOlle o or 1
@J] 2

~ 3
[ll] 4
[ll]@J] 5
[ll]~ 6

Thus, for example,

'ABC' 34.3 ASN

assigns the name ABC to ~@] (row 3, column 4, shift 3--a.

The key assignment object can be any single object, either a built-in command, an
XLIB name for a library command, or any user-created object. For most of these
object types, the user mode behavior of the assigned key is similar to the action of
default keys: in immediate-mode, the key object is executed; in algebraic entry mode
the key object is copied to the command line if it is allowed within algebraic expres­
sions; in program entry mode, the object is copied to the command line. There are
two exceptions:

• Keys assigned to string objects echo those strings to the command line, without
their surrounding "" delimiters, regardless of the entry mode. This allows you to
provide single-key entry for inaccessible characters or multi-character strings.
For example, if you need to usc the X character, you can assign it to the [ll] 0

-196-

Customization 7.2

key:

215 CHR 75.4 ASN

• Keys assigned to programs are not usable in program entry mode--they just beep.
This restriction is based on the assumption that keys defined by programs arc
meant for immediate execution, and so to echo them into the command line
would more likely be a nuisance than a positive feature.

7.2.1.1 An Interactive Key Assignment Program

I ASN41 ASN HP41-sryle

« RCLF STD - 55 CF

»

"Assign:" DUP {V}

IFERR INPUT

THEN 3 DROPN

ELSE

IF DUP "" SAME

THEN "(Clear)" SWAP

ELSE "{" OVER + OBJ- 1 GET

END

3 ROLLD + 3 DISP

"To:" DUP 5 DISP

"(Press a key)" 10 CHR + 6 DISP

IFERR 0 WAIT

THEN DROP 91

END

SWAP OVER + 5 DISP

"" 6 DISP

IF OVER "" SAME

THEN DELKEYS DROP

ELSE ASN

END 1 WAIT

END STOF

9CF1

Save current modes, activate STD

and argument recovery.

Prompts for definition object.

Enter definition.

If ON, then quit.

OthelWise, proceed.

If no entry,

then show (Clear);

else convert entry to an object.

Show the object.

Prompt for a key.

Wait for a key.

If ON, then keycode 91.

Show the keycode.

If definition is null,

clear the key definition;

else make the assignment.

Pause to make the display visible.

Restore old modes.

In the HP 41, ASN is an interactive operation in which you assign a command or pro­
gram by spelling its name, and specify a key by pressing it. This friendly style can be
imitated on the HP 48 by means of the program ASN41, listed above. Executing ASN41

-197-

7.2 Customization

prompts you to enter a key assignment object into the command line (you can press
[Q[J to cancel the new assignment), either by typing it in or by pressing a keyboard or
menu key for the object. When you then press fENTERf, ASN41 displays (Press a key),
and waits for a key press (which can be f ON f). After the key press, the display shows
the key code for one second, and the assignment is complete. If you press ENTER at
the first prompt without entering any object, any current key assignment for the desig­
nated key is clearcd.

7.2.2 Multiple Key Assignments
In application programs, it is often desirable to assign several keys, or even the entirc
keyboard. You can achieve this with the command STOKEYS, which takes as input a
list of object-key pairs like those used by ASN:

{ ob jeet 1 re.p 1 ob jeet 2 re.p 2 ob jeetn re.p,,}

The assignments made by STOKEYS (and ASN) arc cumulative; the new assignments
specified in the argument list are added to those already activated by previous uses of
STOKEYS and ASN.

You can recall the list of all current key-object pairs by executing RCLKEYS. Like
RCLF and RCLALARM, RCLKEYS is most useful for saving the currl:nt statl: of the
H P 41\ so that it may bl: rl:stored later.

The list returned by RCLKEYS may include thl: name S (for System) al the start of Ihl:
list, without any corresponding key code (making an odd number of list clements). If it
is present, the S means that keys that arc not otherwise assigned retain their default
unassigned behavior in user mode. Similarly, if you include an S at the head of a key­
object list used by STOKEYS, the default behavior of unassigned keys is restored.

Disabling unassigned keys is one of the features of DELKEYS (DELete KEYs). In gen­
eral, DELKEYS removes the user key assignment of one key specified by a keycode rc.p,
or of multiple keys specified by a list of keycodes. As a shortcut, a DELKEYS clears all
current user key assignments and restores all keys' default actions. Furthermore, the
name S is also accepted as an argument by DELKEYS; 's' DELKEYS disables all keys
that do /lot have user key assignments, so that they merely beep when pressed in user
mode. This is useful for programs that want to halt for user input, and wish to restrict
the user's choices to a few selected keys. A typical program sequence might look like
this:

-198-

Customization

RCLF RCLKEYS - flags keys

« 0 DELKEYS

'S' DELKEYS

{PRG1 82 PRG2 83 PRG3 84}

STOKEYS

-62 SF

"Press 1, 2, or 3" PROMPT

keys STOKEYS

flags STOF

Save the current key assignments

and flags.

Clear current key assignments.

Disable unassigned keys.

Assignments for 1, 2, and 3 keys.

Make the assignments.

Turn on user mode.

Stop and prompt for a choice.

Restore the original assignments.

Restore the flags.

7.2

Executing this sequence shows the prompt Press 1, 2, or 3, inviting the user to press
one of those three keys. All other keys are disabled, so that you can not do anything
else that might disrupt what the program is trying to do. When you press one of the
indicated keys, it executes one of the names PRG1, PRG2, or PRG3, which presumably
arc the names of programs. Each of those programs should terminate with CO NT, to
return execution to the above sequence, which finishes by restoring previous key assign­
ments and flag settings.

For cases where you want to suppress most, but not all, default key assignments,
STOKEYS accepts the name SKEY as a special object that you can assign to one or
more keys. When you do so, the selected keys retain their default behavior even if you
later execute'S' DELKEYS to disable unassigned keys. For example,

SKEY 25 SKEY 34 SKEY 35 SKEY 36 } STOKEYS 'S' DELKEYS

disables all user mode keys except the four arrow keys.

You can paint yourself into a corner with DELKEYS: in user mode, if you execute 0
DELKEYS 'S' DELKEYS, you disable the entire keyboard--including the @:iJ IUSR I key
you need to turn off user mode. The only recourse in this situation is to execute a sys­
tem haIt ([ID[] - CQ:J together). A system haIt turns user mode off (flag - 62 is the
only flag affected by a system halt). Afterwards, you might want to execute { S } STO­
KEYS or a DELKEYS to prevent falling into the same trap again.

7.2.3 Key assignments and memory
If you use MEM to check the amount of free memory before and after you make your
first key assignment, you will find that the assignment has used more than 275 bytes of
memory (to be precise, 275 bytes plus the size of the assigned object). Fortunately,

-199-

7.2 Customization

subsequent key assignments are not so expensive. The HP 48 stores its key assignments
in a list stored in a normally inaccessible part of the home directory. When there are no
assignments, the list is empty. However, upon the first execution of ASN, the HP 48
adds 49 objects to the list, each of which records the assignments for one key. With one
assignment, 48 of the objects are themselves empty lists (five bytes each). The remain­
ing object is a list that contains the assignment objects for each of the six planes of the
assigned key; five of these are empty lists, and the sixth is the assignment object (30
bytes plus the assignment object size). For subsequent assignments,

• Each previously unassigned key costs 25 bytes plus the new object size, as the empty
list for the key is replaced by a list containing five empty lists plus the object;

• Each assignment for a new plane of a previously assigned key replaces an empty list
with the new object, requiring the object's size less five bytes.

You can assign any object to any key. However, if a large object is stored in a global
variable or a port variable, it is more efficient to assign the object's variable name to a
key rather than the object itself, since the assignment list then contains the name rather
than the object. Keeping assignment objects small also generally maximizes the speed
of key assignment execution hy minimizing the size of the list that the HP 4X has to
search to find an assignment.

7.3 Custom Menus
Thc VAR menu (section (d) is a convenient facility for displaying the names of stored
objects, and providing single-key storc, recall, and exccution of the objects. However,
once you have more than fcw glohal variables, the VAR menu becomes harder to
manage, since the positions of entries in the menu changes as objects arc stored and
purged, and also the variables may be distributed among several directories and so
harder to find.

The HP 48 clIstom menu system allows you to define one or more menus of your own
devising, in which you can mix commands and other objects as well as variable names,
in any order you choose. There is even a primary key ICSTI that activates a custom
menu, making such menus extremely convenient. Custom menus can be temporary or
permanent, and you can associate one permanent custom menu with any directory.

A permanent custom menu is defined by a list of one or more objects, stored in the
reserved-name global variable CST. The first six objects define the first page of the
menu, in left-to-right order, the second six define the second page, etc., just like the
VAR menu. When you press ICSTI, the HP48 searches the current directory for CST; if
it is not present, the search continues in the usual way up through the parent directories.
CST may contain a list of objects, or it may contain the namc of a global variable (in
the current path) that contains a list. For example, if you execute

-200-

Customization

then press ICSTI :

{A Be} I CST' STO

{ HIlME }

4:
3:
2:
1 : _--

7.3

The menu keys for A, B, and C in this custom menu have the same behavior as VAR
menu keys for those variables, including the left- and right-shifted actions. In general,
the actions of shifted and unshifted CST menu keys depend on the type of the matching
objects in the CST list (see Table 7.2 below).

The command MENU provides an alternate way to store a custom menu list. MENU
takes a menu list (or the name of a list) and stores it in CST in the current directory,
then automatically activates the custom menu. Generally, the only time you might use
I CST' STO instead of MENU is when you want to define a custom menu for future use,
but do not want to activate that menu immediately.

Like any other menu, the custom menu remains active until another menu is activated.
If you change directories while the custom menu is active, the menu is updated if neces­
sary to reflect the contents of CST in the new directory. However, storing a new menu
list in CST (or purging it) does not affect the displayed menu until you press ICSTI again
or change directories.

It is also possible to activate a temporary custom menu that does not use or change the
contents of CST, by using TMENU instead of MENU. The menu defined by TMENU's
list or name argument persists until you change menus @ IMENUI restores it). Pressing
ICSTI reverts to the menu defined in CST, not that activated by TMENU. TMENU is
most useful in programs, where you wish to prompt the user with a particular menu,
then have no further use for the menu. In many cases a menu used within a program
has no meaning once the program is finished, so TMENU is a better choice than MENU.

-201-

7,3 Customization

7.3.1 Built-in Menus
You can also use MENU and TMENU to activate a built-in menu, by supplying a real
number argument for either command (there is no difference between the commands in
this case). The number must be of the form mmmm.pp, where mmmm is a one- to
four-digit number that specifies the menu, and pp is a two-digit number that specifies
the menu page. For example, menu 1.01 is the first page (.01) of the custom menu
(menu 1) and 2.02 is the second page of the VAR menu (menu 2). (For page 1 of any
menu, you can omit the pp digits and just specify an integer menu number). Note that
the contents of CST remain unchanged when you use TMENU or MENU with a number
argument. Executing MENU or TMENU with thc number of a non-existent menu
returns a blank menu.

There is a certain logic to the numbering of HP 48 menus, although there is little practi­
cal consequence to the scheme. Menu numbers 0, 1, and 2 are assigned to the alterable
menus--the temporary custom menu, the ordinary CST menu (1) and the VAR menu,
respectively. For add-in library menus, the menu number is just the library number
(section 3.4.11). The permanent built-in menus are numbered in the order that they
"appear" on the HP48 keyboard, starting with the IMTHI menu as menu 3, and number­
ing left -to-right through its sub-menus and so on across and down the keyboard. You
can determine a menu number from these rules, or you can look up the number in a
manual. But it is generally ea;iest just to activate the desired menu and page, then exe­
cute RCLMENU, which returns a number mm.pp for the current menu. Of course, you
have to execute RCLMENU by typing it into the command line, or by assigning it to a
user key--using - RClM - always returns the number of the menu containing that key,
which happens to be 68.0J. [In thc HP48S/SX, the number of this mcnu is 21.02. The
difference in menu numbers between is one of the very few program incompatibilities
between the S and the (, models. A program that activates one of the fIXed built-in
menus must be altered to move from one HP 48 version to another.]

To illustrate the use of MENU for built-in menus, suppose that you find yourself using
PUT and GET more frequently than other PRG menu commands. Then you might
assign «35,01 MENU» to IPRGI (key 22); then in user mode, pressing IPRGI takes
you immediately to the menu containing PUT and GET.

7.3.2 Custom Menu Object Types
The precise action of a custom menu key depends on the type of the object correspond­
ing to that key in the custom menu list. As we mentioned previously, if an object is a
name, the custom menu key action is the same as that of a VAR menu key. For most
other object types, the "execute this object" immediate-mode action of an unshifted
menu key is retained from the VAR menu, but only names and unit objects have
automatic shifted-key definitions. Furthermore, the effect of the menu keys in

-202-

Customization 7.3

algebraic- and program-entry mode also depends on the type of object. Table 7.2 shows
the custom menu behavior exhibited by each HP 48 object type, for all four entry modes.

Table 7.2. Custom Menu Key Actions by Object Type

Key·Object Entry Unshifted Left-Shifted Right-Shifted
Type Mode Action Action Action

Name Immed. Enter the name name 8TO name RCL
ALG Echo the name name 8TO name RCL
PRG Echo the name Echo' name' 8TO Echo 'name' RCL
ALG PRG Echo the name Echo' name' 8TO Echo 'name' RCL

Port Name [mmed. :n:name RCL EVAL :n:name 8TO :n:nam£' RCL
ALG :n:name RCL EVAL :n:name 8TO :n:name RCL
PRG Echo the name Echo :n:namc 8TO Echo :n:namc RCL
ALG PRG Echo the name Echo :n:name 8TO Echo :n:name RCL

Number [mmed. Enter number ~onc None
ALG Echo with no spaces None None
PRG Echo with spaces None None
ALG PRG Echo with no spaces None None

String any Echo string, no quotes None None

Unit Immed. Enter unit, multiply Enter unit, CONVERT Enter unit, divide
ALG Echo unit part Enter unit, CONVERT Enter unit, divide
PRG Echo unit part Echo' unit' CONVERT Echo 'unit' /
ALG PRG Echo unit part Echo 'unit' CONVERT Echo' unit' /

Algebraic Immed. Enter object None None
ALG Echo object, no ' , None None
PRG Echo object with' , None None
ALG PRG Echo object, no ' , None None

Program Immed. Enter program None None
ALG Enter program None None
PRG None None None
ALG PRG None None None

RPN Command lmmed. Enter command None None
ALG Enter command None None
PRG Echo, no spaces None None
ALG PRG Echo with spaces None None

Function Immed. Enter function None None
ALG Echo, with alg. syntax None None
PRG Echo with spaces None None
ALG PRG Echo, with alg. syntax None None

-203-

7.3

List

Other lmmed.
ALG
PRG
ALG PRG

(See section 7.3.3)

Enter object
Enter object
Echo object with spaces
Echo object with spaces

None
None
None
None

• "Enter object" means perform ENTER, then execute the object.

• "Echo object" means copy the object to the command line.

None
None
None
None

Customlzatlon

• "Alg. syntax" means appending parentheses where appropriate, and surrounding with spaces if the function
is a multi-character infix operator like MOD or XOR.

• The actions associated with built-in RPN commands and functions also apply to XLIB names, according to
whether a name refers to a library command or to a function.

• The actions described for port names also apply when the name has the extended form :tag:{ list} (section
6.5.3). ;\iote, however, that the left-shifted store action fails if the corresponding port variable already
exists (section 6.4.2.2).

• The ALG PRG actions of left- and right-shifted menu keys for names, port-names. and unit objects also
turn off ALG.

Some points worth noting from Table 7.2:

• The menu key for a string echoes the string to the command line without quote del­
imiters, which enables you to define typing aids--keys that echo a character sequence
that you use frequently, or perhaps a special character that is unavailable or incon­
venient on the alpha keyboard.

• The menu keys for unit objects work just like the keys in the various UNITS menus.
This is very useful for creating units menus that combine units from different built-in
menus or pages plus units that you have defined yourself.

• A program is the only object type that is not echoed to the command line when an
assigned key is pressed in algebraic or program entry mode. Generally, program
assignments are meant for immediate execution, so this is not a very important limi­
tation.

By default, a custom menu key label is derived from the associated menu list object,
showing the first few (up to five) characters from the display form of the object. Espe­
cially for extended objects like programs, where you can only see the leading « and
one or two characters from the first object in the program, such labels may not be too
helpful, since you can't see enough of the object to recognize it. The HP 48 solves this
problem by allowing you to define labels that are independent of the objects that define
the menu key actions.

-204-

1

Customization 7.3

7.3.3 Menu Key Labels and Shifted Menu Key Actions
If any of the objects in a custom menu key list is itself a list, its contents are used to
create an extended form of menu key definition that permits specification of the menu
key label, and assignment of one or both shifted key actions. A single-key list contains
two objects:

{label-object action-object}

• The first object in the list, normally a string or name with up to 5 characters, is used
to form the menu key label. If the object is other than a string, a name, or a 21 x 8
graphics object, the label text will include the leading object delimiter, if any. If the
object is a 21 X 8 graphics object, it is displayed as the key label.

• The second object in the list defines the key actions, following the rules listed in
Table 7.2. (If the second object is absent, there will be a menu key with a label
defined by the first object, but it just beeps whcn pressed.) One more level of exten­
sion is available: if thc second object is itself a list, it may contain one, two or three
objects, so that the most general custom menu list object looks like this:

{ label {llo-shift left-shift right-shift} }.

The three objects in the inner list define the unshifted, left-shifted, and right-shifted
key actions for the menu key (which is labeled by the label object), following the
rules for ullshifted actions listed in Table 7.2. Note that this applies to algebraic and
program entry mode as well as immediate entry mode (section 4.3.1)--the key action
object determines what text is echoed to the command line (and whether
parentheses are included), not the label object.

By way of example, consider a custom menu defined by the following list:

{ GET
"HELLO"
{"5DROP" «5 DROPN»}
{SINH {SINH ASINH}}
{FOO {« {HOME UTIL FOO} RCL EVAL»

}
}

«PATH HOME UTIL SWAP 'FOO' STO EVAL»
« {HOME UTIL FOO} RCL»

{GROB 21 8 FFFFF1D100711EOE0110F10110F1011EOE01D10071FFFFF1 KILL}
}

Executing MENU with this list yields a menu that looks like this:

-205-

7.3 Customization

{ HOME}

The individual menu keys are defined by the menu list as follows:

• The first key ~ GET~ illustrates the simple assignment of a command to a key, with no
shifted actions.

• The second key - HELLO- comes from the string "HELLO". This is a "typing aid";
the unshifted key echoes HELLO to the command line without delimiters or sur­
rounding spaces. The shifted key has no action.

• The next key -SOROP- illustrates labeling a menu key with a string while the key
action is defined by a program.

• The ~SINH~ key has both an un shifted action (SINH) and a left-shifted action
(ASINH).

• ~ FOO~ has actions defined for both the left-and right -shifted key as well as the
unshifted key. It is designed to act like a VAR menu key for the variable FOO in the
HOME UTIL directory, that will work regardless of the current directory.

• The next key is labeled by the 21 x 8 graphics object, and executes or echoes KI LL
when pressed.

You can create the graphics object by executing the following sequence:

ERASE PICT {#O #o} {#20d #7d} DUP2 DUP2
LINE BOX {#O #7d} {#20d #O} LINE SUB

7.4 Vectored ENTER
The normal process associated with ENTER is described in section 4.3.3. As mentioned
there, however, you can modify that process by means of an HP 48 feature called vec­
tored ENTER (the name comes from computer science jargon, referring to the fact that
the system looks for a vector--a pointer to a replacement procedure--before executing a

-206-

Customization 7.4

standard procedure). This feature gives you a powerful customization capability, since it
allows you to redefine the way command line text is interpreted, and a chance to exe­
cute additional commands after command line entry and execution are completed.

Three conditions must be met to activate vectored ENTER:

1. At least one of the variables aENTER and ~ENTER must exist, III the current
path.

2. Flag - 63 must be set. The use of a flag prevents the HP 48 from searching for
the special variables when the flag is clear, thus speeding up the ordinary ENTER
process.

3. Flag - 62 must be set. This is the user mode flag; including this flag as part of the
vectored ENTER setup gives you a convenient keyboard means (t5J IUSAI) with
which to turn vectored ENTER on and off.

When the two flags are set, the HP 4R searches for the variable aENTER before parsing
the command line in the usual way (step 2 in section 4.3.3). If the variable exists, the
command line text is not parsed but is just entered into stack level 1 as a string object,
following which aENTER is executed. Since this execution replaces normal command
line parsing and execution, you can store in aENTER a program that interprets and uses
the command line text in any manner you please. Furthermore, since OBJ~ "executes"
a string object as if its text were entered in the command line, you can define aENTER
as merely a preprocessor that modifies the command line text and then uses OBJ~ to
continue with normal processing. This technique is used in the binary calculator pro­
gram BINCALC described helow, to save you from having to type a # when you enter a
binary integer.

After aENTER is finished, the ohject assigned to the key that started the ENTER pro­
cess is executed. Then, after its execution is com plete, the HP 48 searches the current
path for a variable ~ENTER. If that variable exists, a string representing the key object
is entered into levelland ~ENTER is executed. In general, ~ENTER is intended to
contain a program that performs some operation on the result of a command line entry;
the key object string is made available for record keeping purposes.

A straightforward example of the use of vectored ENTER is to create a simple
calculation-tracing mode using a printer. Store the following program in aENTER:

«PR1 OBJ~»

This routine copies the command line contents to the printer, then uses OBJ~ to do
normal command line processing. You also need this program for ~ENTER:

-207-

7.4 Customization

«"[" SWAP + "]" + PR1 DROP PR1»

The ~ENTER program surrounds the key object string with brackets [], then prints it,
followed by the level 1 result of the entire execution. This example reveals one limita­
tion of the ~ENTER process: only keys that correspond to programmable, named
objeets--commands, XLIB names, global names, and local names--return a meaningful
string for ~ENTER. For other object types, plus unnamed built-in objects such as
ENTER itself, only an empty string is returned. For these cases, the above ~ENTER
program prints empty brackets [].

7.4.1 Examples
The vectored ENTER system along with the other HP 4~ customization facilities enable
you to tailor the HP 4X into many different specialized calculators. In this section, we
will give two examples, one that focuses the HP 48 on binary arithmetic calculations, and
another that turns the HP 4X into a "fraction calculator."

I BINCALC Binary flllC!;Cr Caiwia/or DE9F I

« IF DUP .,,, *
THEN "#" SWAP + OBJ­
ELSE DROP
END
" Binary Calculator" 10 CHR +
1 DISP 1 FREEZE

o:ENTER program:
If there is command line text.
prepend #. then execute.

Show a message.

» "" OVER EVAL '0: ENTER' STO Show the message and store the program.
RCLKEYS RCLF RCLMENU
- keys flags smenu
«0 DELKEYS

{"A" 41 "B" 42 "C" 43
"0" 44 "E" 45 "F" 46

} STOKEYS
-63 SF -62
SF 15.01 TMENU
HALT
flags STOF
o DELKEYS keys STOKEYS
'0: ENTER' PURGE
smenu MENU

Save the key assignments. flags. menu.
Remove current key assignments.

Assign hexadecimal letters to row 4.
Activdte vectored ENTER.
Turn on the binary menu.
Ilait for binary calculations.
Restore flags.
Restore key assignments.
Discard 0: ENTER.
Restore the original menu.

Executing BINCALC displays the message Binary Calculator, and activates an environ­
ment in which it is assumed that all command line entries are to be binary integer
objects, one per command line. The keyboard is redefined so that the fourth-row keys

-208-

Customization 7.4

echo the hexadecimal digits A - F, to supplement the ordinary number pad for hexade­
cimal entry. The program uses those keys rather than the menu keys, in order to leave
the latter available for other menus, especially for the base operations menu (IMTHI
"BASE") menu. As long as the environment is active, you can perform RPN arithmetic
and other operations on binary integers, entering the integers without the # delimiter.
You can temporarily disable the special environment with the @l] IUSRI key, and re­
enable it with the same key. Finally, when you want to resume normal operations, press
@l] ICONTI. This restores the key assignments, flags, and menu that were present when
you executed BINCALC, and reverts to the standard environment.

BINCALC's demands on vectored ENTER are modest. In the next example, FRACALC,
the program takes over command line interpretation entirely. FRACALC executes simi­
larly to BINCALC: an environment is established in which command line entries arc
assumed to he fractional numhers. You enter numhers in the form i 11.£1, where i is the
integer part, 11 (separated from i hy a space) is the numerator, and d is the denomina­
tor. 11 and d may be separated by a period or a comma. Examples:

1 2.3
-4 5.6
8.12
-1,2

'1+2/3'
, -4-5/6'

'2/3'
, -1/2'

You can apply immediate-execute commands to the stack fractions, and their results will
also he fractions:

1 1.2 IENTERI 3 2.3 [}] '5+1/6'

You can disable fraction entry by turning off user mode. Press @l] ICONTI to terminate
the fraction environment entirely.

FRACALC uses -Q to convert decimal numbers to fractions, with 5 decimal places of
accuracy. You can change the 5 FIX in the program to another value to change this
accuracy when you want to deal with denominators larger than three or four digits.
However, too large a value may cause unexpected fractions to be returned for some
small denominators.

-209-

7.4 Customization

I FRACALC FraCiio/1 Calculator C01B I

«
«

IF DUP SIZE DUP
THEN OVER"" POS

3 PICK DUP "." POS
SWAP "," POS MAX
DEPTH 4 - - cmd len int div stk
« IFERR

IF div
THEN cmd int div 1 - SUB OBJ-

cmd div 1 + len SUB OBJ- /
IF int
THEN cmd 1 int SUB OBJ­
DUP SIGN ROT * +
END

ELSE cmd OBJ­
END

THEN
IF DEPTH stk - DUP 0 >
THEN DROPN
END cmd "Invalid Entry" DOERR

END

ELSE DROP2
END" Fraction Calculator" 10 CHR +
1 DISP 1 FREEZE

» "" OVER EVAL '", ENTER' STO
« DROP

IF DEPTH
THEN

IF DUP TYPE 9 OVER SAME
SWAP NOT OR

THEN -NUM

END

DUP IP SWAP FP
10 RND 5 FIX -Q STD +
END

» '[3ENTER' STO
RCLF - flags
« -62 SF -63 SF -51 CF STD HALT

flags STOF
»

'",ENTER' PURGE
'[3ENTER' PURGE

-210-

Start of '" ENTER procedure.
If there is command line text, parse it.
End of integer part, if any
Find a ".", or
find a",".
Store parameters and stack depth.
Error trap for invalid entries.
If there is a fraction,
separate out the numerator,
and divide by the denominator.
If there is also an integer part,
get the number.
Add the fraction with the same sign.

No fraction, so assume integer entry.

Error handler:
Discard extra stack objects.

Report the error

Discard empty command string and size.

Show the message and store the program.

Do nothing if stack is empty.

If the last entry is an algebraic.
or a real number.
then convert to a fraction:
Get the integer and fractional parts.
Convert to a symbolic fraction.

Save the current flags.
Halt for binary calculations.
Restore original flags.

1
~1
'1
1

8. Problem Solving

The rich command set of thc HP 48 allows you to solve many problems merely by press­
ing a few keys. However, where the HP 48 really excels is in the ease with which you
can link command sequences together into procedures. This allows you to solve com­
plex problems by breaking them down into simple pieces. Once a procedure
corresponding to a problem's solution is developed and stored, you can executc it any
number of times while you vary the input data.

The term programming is conventionally uscd for the proccss of recording a sequence of
calculator instructions in such a manner that you can later replay the sequence any
number of timcs without having to rccnter thc instructions. Herc, we will use thc morc
general term problem solving to describe the various HP 48 solution strategies, of which
programming--creating program objects--is just one of several.

A prohlem solution generally consists of three parts:

I. Data input;

2. Data processing and calculations;

3. Rcsults out put.

Each of these stagcs can be simple or complicated. To enter data, for example, you can
usc a program that just takes one or more objects from thc stack which arc presumed to
be there when the program is executed. Or, your program can prompt for each
required value hy halting with a text or graphical display that asks you for a specific
input. Similarly, a program can return its results to the stack, or it can display each
result with an identifying text label.

Regardless of the complexity of a calculation, in most calculators the only method of
automating calculations is to create a program, complete with labels and line numbers.
While this restriction has the virtue of simplicity in that there are no alternatives, the
process can be cumbersome for simple procedures, particularly for straightforward
mathematical expression evaluation. The HP 48 provides a series of problem solving
alternatives, ranging from simple expression evaluation to programs with loops,
branches, recursion, etc. Problem solving can be both simpler and more complicated
than in other calculators. In general, it is easier to program any given calculation on the
HP48; additional complication only arises really when you are dealing with problems
that are not solublc at all on other calculators.

The HP 48 problem-solving alternatives sort roughly into four approaches:

-211-

8.0 Problem Solving

• HP Solve;

• User-defined functions;

• Symbolic manipulations;

• C;eneral programming.

These are listed roughly in order of increasing complexity; not so much in the complex­
ity of the mathematics involved but rather in the amount of mental effort you need to
translate a real problem into HP 48 terms. The classification is somewhat imprecise
because there's a great deal of overlap, such as programs that contain user-defined func­
tions; HP Solve exercises that use programs; even algebraic objects that execute pro­
grams. With all of these options, your challenge is to determine which approach is most
appropriate for a particular problem.

In the remainder of this chapter, we will show which types of problems are suitable for
each general problem solving method, then consider user-defined functions as an initial
exercise in HP 48 problem solving. HP Solve and symbolic algebra are left for detailed
study in Part II. The remaining chapters of Palt I are devoted to various programming
tools and methods.

8.1 HP Solve
HP Solve, which is essentially a combination expression-evaluator and root-finder, pro­
vides an exceptionally easy method of problem solving on the HP 48. It is suitable for
any problem that can be reduced to a single equation relating all of the variables in the
problem, and for which a real-valued numerical answer is sufficient. The greatest bene­
fit of HP Solve is that you don't have to solve the equation formally for the unknown-­
ail you have to do is enter any equation that relates the unknown to the known vari­
ables. Furthermore, you can interchange the roles of known and unknown variables as
you go along, without doing any additional work to restate the problem.

A prototype problem ideal for the solver is the simple "cost-of-travel" equation:

COST = DISTANCE X PPG / MPG,

where PPG stands for "price per gallon," and MPC; stands for "miles-per-gallon." This
single equation relates all the relevant parameters, and has the virtue of containing only
simple arithmetic operations, so that there is only one possible solution for any choice of
values for any three of the variables. To address this problem with HP Solve, all you
have to do is enter the equation as written above (with' , delimiters) press @=lJ !SOLVE!

~ ROOT~ @=lJ ~ EO ~ to select it as the current equation, then press - SOLVR-. The

-212-

Problem Solving 8.1

calculator presents you with the solve variables menu, which provides a menu key for
each of the four variables:

EQ: 'COST=DISTANCE*PPG

You can use the menu to store values III any three of the variables and solve for the
fourth.

Contrast this simplicity with the process you have to follow on other calculators without
HP Solve. For each choice of unknown variable, you have to

a. Solve the equation formally (on paper) for the unknown;

h. Translate the solved equation to program form;

c. Add input prompting steps to the start of the program, and output laheling to the
end.' .

d. Enter the program using the calculator's program editor;

e. Run the program for each new set of input parameters.

If you're very clever, you can figure out how to combine the four separate programs into
one, where the program figures out from the inputs whieh variable is to be calculated
and thus which branch of the program to use--in other words, to duplicate what the HP
Solve does for you automatically.

8.2 Symbolic Manipulations
The HP 48 and its predecessor the HP 28 are unique among calculators in their ability to
apply mathematical operations to "symbolic" quantities--objects for which no numerical
value has been assigned. If you're a student learning algebra or calculus, or using their
techniques in other mathematical or scientific studies, this capability may be very excit­
ing. However, if you're not directly interested in algebra for its own sake, you might
wonder why these symbolic capabilities are important to you.

-213·

8.2 Problem Solving

Actually, if you use a programmable calculator at all for more than simple keyboard
arithmetic, you are already performing a kind of symbolic operation. Any time you per­
form a calculation more than once, using varying data, you probably represent the calcu­
lation symbolically at some point. In particular, when you write a program to automate
the calculation, that program is a symbolic operation. You write it to accept certain 11

inputs, without specifying their values, and to compute an unknown result. This is no ~I

different in principle from writing an algebraic expression on paper. An expression also ~1
"works" with unspecified inputs (variables) and returns a previously unknown value
when you evaluate it.

So in the sense that any program is a symbolic calculation, any programmable calculator
is a "symbolic" machine. The important contribution of the HP 4S's symbolic capabili­
ties is that they allow you to apply mathematical operations to the programs themselves,
and obtain new programs as results. For example, consider a program that recalls the
value of a variable and doubles it. In a conventional language like BASIC, the program
IS

100 Y=2*X
200 END

But suppose that after entering the program you realize that you arc really interested in
the sine of the result, sin(2x). You have no choice except to rewrite the program, in
this case, editing line 100, being sure to enter the SIN in the right place and to include
the parentheses.

On the HP 4~, the original "program" consists of the algebraic object' 2 *X'. To change
this into the new program 'SI N (2 *X)', all you have to do is execute SI N when the origi­
nal expression is in level 1. The parentheses are automatically inserted. In effect, the
calculator writes a new program for you--all you have to do is use the same keystrokes
on the symbolic "program" as you would use with a numerical quantity.

Another way to see the value of the HP 4~ capabilities is to consider a general
problem-solving process that consists of these steps:

1. Identify the problem.

2. Determine the known and unknown quantities.

3. Figure out the mathematical relationships between the quantities.

4. Solve the relationships for the unknowns in terms of the knowns.

5. For each set of known quantities, evaluate the solved relationships to obtain
numerical values for the unknowns.

-214-

Problem Solving 8,2

When you use a conventional calculator, the calculator can only enter the process at the
final stage. Once you have equations for the unknowns, you can program those equa­
tions into the calculator, enter numerical values for the known variables, and run the
programs to return the numerical values for the unknowns. The HP 48, on the other
hand, can enter the process as early as step 2. You can use its symbolic capabilities to
work out the relationships and solve for the unknowns--steps for which you would need
pencil and paper using another calculator. The symbolic solution that you find with the
HP48 is also the "program" you can use for repeated evaluation of the unknowns with
different inputs. Even if the equations you derive can not be solved symbolically for the
unknowns, you can still use the Solver to obtain numerical results, without any further
programming.

As an example of this process, consider the classic introductory calculus problem:

A fanner has J()() yards of fencing to enclose a rectangular field, which is
bounded on one side by a river. What length (L) and width (W) of the
field Xives the maximum area?

• Solution:

Steps Keystrokes Results

I. The length of the fence
is 100 yards. '100_yd = L+2*W' '100_yd=L+2*W'

IENTERI

2, Solve for L. 'L' ~ISYMBOLICI-ISOL- 'L= 100_yd -2*W'

3. Assign this value to L. ~IDEFI

4. The area of the field is
L times W. 'AREA= L*W' IENTERI 'AREA=L*W'

5. Substitute for L. I EVAL! 'AREA= (100_yd-2*W) *W'

6. To find the maximum area,
differentiate the expression. 'W' IENTERI ~ W 0=

,
- (2*W) + (100_yd-2*W)'

7. Collect terms. =COLCT= '0= 100_yd -4*W'

8. Solve for W. 'W' ~ISOL~ 'W=25_yd'

·215-

9. Assign this value to W
and evaluate L.

Answer: The field should be 50 yards long and 50 yards long.

Problem Solving

You can use the HP 48 to formulate and solve the entire problem, incorporating the
physical units directly into the expressions. With a conventional calculator, all you can
do is evaluate the final numerical answer, once you have worked it out on paper; the
unit conversions have to be done separately.

As another exam pic, in section 12.1l.4 we list a program SIMEQ that solves a set of
simultaneous linear equations. Many other calculators provide this capability either
through built-in commands or as program applications. However, without exception
(including the HP 48's own built-in method using matrices and vectors), these require
you to enter the coefficients and constants rather than the equations themselves. In
other words, you must to do the work yourself of inspecting the equations, collecting
terms and rearranging if necessary, to determine the coefficients and constants. The
SIMEQ program lets you enter the equations in any order, and without having to struc­
ture the individual equations in any particular way. It is the HP 48's ahility to deal with
expressions and equations as data to he manipulated--as symholic ohjects--that makes it
possihle for you to write a program like SIMEQ in a straightforward, compact manner.
In other calculator languages, writing a program like SIMEQ would require considerahle
ingenuity, and would likely end up heing harder to use than the usual method of enter­
ing coefficients in order.

HP 48 algehraic ohjects (section 3.5.2) are procedures that are internally the same as
programs. This means that creating any algebraic ohject is equivalent to writing a pro­
gram. The program's "inputs" are the values stored in the variahles named within the
algehraic ohject; its "output" is the symholie or numeric result that is returned to the
stack. The heauty of an algehraic object as a program is that you can treat it as a sym­
bolic quantity, to which you can apply additional mathematical operations, ohtaining new
algebraic objects--programs--automatically.

The hest time to usc algebraic objects as programs is when you have already defined a
set of user variables, and wish to make calculations using their values. You can, of
course, use the values directly by evaluating the variables as you go and using RPN com­
mands and functions to combine the values. But if a calculation is defined in algebraic
terms, you'll do better to entcr the appropriate formula as an algehraic ohject, so that
you can verify its definition before substituting specific values.

For example, to add the values of variables A and B, you can press [A] []] IT]. Or you

-216-

1
,I

j;

Problem Solving 8.2

can type' A+ 8' IEVALI. The advantage of the latter is that you can see the entire calcu­
lation symbolically before making numerical substitutions. This advantage becomes
more important as the complexity of a calculation increases. You are also relieved of
the necessity for translating the calculation into RPN logic.

8.3 Programs
For problems for which the simplified problem solving methods that the HP 48 provides
are not adequate, your final option is to write a program. There is a wide range of
prohlems that don't fit the requirements for using other methods, including many that
are mathematically very simple. For example, the three "simple" methods have the
common limitation of being ahle to return only one result at a time. If you want to
automate a process as trivial as returning the square and the cuhe of an argument, you
must write a program. Here are three HP 48 programs that make those calculations:

«DUP SO SWAP 3 ~»

«- X « X SO x 3 »»

The last two versions illustrate that you don't have to give up the advantages of the
alternate prohlcm solving methods when you create program objects; you just incor­
porate them into your programs. Even HP Solve's root-finding capabilities can he pro­
grammed, via the ROOT command.

The H P 48 is unusual among calculators in that it has no "program mode." In other
calculators, you create a program hy activating a mode where the keystrokes you press
arc recorded sequentially as program steps or lines. A consecutive sequence of such
steps constitutes a program. To execute the program, you must leave program mode
and invoke the program hy means of a command like RUN or XEO (execute).

Programming the HP 48 differs from manual calculating only in that you don't execute
sequences of objects individually, but instead comhine them into procedure ohjects-­
programs or algebraics--for later execution. You treat the procedure objects the same
as any other objects: you enter and identify them by characteristic delimiters «< » or
, '), and you can edit, visit, store, recall, evaluate, and purge them, or just move the
ohjects around on the stack using standard commands.

Many BASIC language computers share with the HP 48 the property of lacking a special
program mode. By placing a line number at the beginning of a command line, you tell
the computer to include the program line in the current program. However, that stylc
of program entry is very context-dependent: you must be sure that the line number you

·217·

8.3 Problem Solving

assign is appropriate. It must be in the proper sequence relative to other lines, and you
must have somehow established that you are adding the line to the right program.
Some computers solve that problem by only holding one program in memory at a time;
others permit multiple programs but you must use various means to select a particular
program for editing.

Other calculator programming also uses more "program-only" concepts, like GTO (Go
To), labels, line numbers, RTN (return), and commands that behave differently when
used in a program than when they are executed from the keyboard. An example of the
latter is the HP41 command FS? (flag set?). From the keyboard, this command returns
a temporary display of YES or NO; when executed in program, FS? acts as a "skip-if­
false" operation, where the next program line is executed if the flag is set, and skipped
if it is clear.

These concepts arc part of what can make programming a calculator a mysterious art
for many people. When you are solving a problem mentally, or with pencil and paper,
you don't considcr line numbers, GTO's, program modes, etc. Instead, you think in
terms of a series of operations that you apply to data or symbols, which produces results
that may in turn be the input for additional operations. This translates nicely to key­
per-function manual usc of an RPN calculator; the operations become keystrokes, and
the data is kept in front of you on the stack. "Keystroke programming" on calculators
originated as a process of preserving a series of keystrokes as a program. Unfor­
tunately, as calculators became more powerful, their programming languages required
you more and more to rethink a problem in order to cast it as a program.

The HP 4R is designed to minimize or eliminate the differences between interactive
keystroke operations and programming. It does this in several ways:

• The command line is a program that is executed immediately; a program is a com­
mand line for which execution is deferred.

• Anything you can do in program you can do in the command line, including halting,
single stepping, using local variables, branches, loops, etc.

• Commands work the same way in programs as they do when executed manually.

• Programs contain no constructs that are artificial from the standpoint of the problem
being solved--no line numbers, no labels, no GTO's. The only things that appear in
a program are objects and commands relevant to the calculation being performed,
plus certain program structures (conditionals, loops, etc.), that are local to a particu­
lar program.

The absence of GTO's and the corresponding labels and line numbers is a manifestation
of the HP 4R's insistence on structured programming (section 9.1.3). Every program is a

-218·

Problem Solving 8.3

self-contained module, with a single "entry" and a single "exit". A program can, of
course, "call" (execute by name) other programs, but only as subroutines that always
return to the same point in the same program that called them. These rules promote a
programming style whereby you break down a large programming task into smaller pro­
grams which are easily written and understood. As you write each "building hlock" pro­
gram, you can test it independently before it is included in any larger program.

8.4 Summary
Table 8.1. UP 48 Problem Solving Methods

Me/hod Typc of Problcm Adval1lages

eser-defined Functions
o Automatic conversion of function o Can be used in RP;\; or algeb raic

formulae to programs by DEFINE. calculations.
o Evaluation of algebraic function,. o Does not require "permanent"
with arguments taken from the user variables.
stack.
o Creation of new symbolic func-
tions.

I II' Solve
o ;\;umerical evaluation of an alge- o Automatic input prompting and
braic expression for many values of labeling; automatic numerical equa-
ils variables. tion solving.
o Symbolic substitution for variables. o Lets you interchange known and
o Numerical solution of an algebraic unknown variables.
expression. especially in combination
with DRAW.
o "What if" problems where the
independent/dependent roles of
variables arc interchanged.

Symbolic Math
o Algebraic calculations using exist- o Symbolic results can be used as
ing user variables. new programs.
o Symbolic manipulations. o Calculations can be verified before

they are performed.

Programs All problems, especially those for All calculator resources arc avail-
which the other methods arc insuffi- able, including the algebraic evalua-
cient: tion features of the other program-

o Multiple results.
ming methods.

o i':on-mathematical problems.
o Special prompting or labeling.
o [teration.
o Complicated decisions and branch-
ing.

·219·

8.5 Problem Solving

8.S User-Defined Functions
The archetype of a small HP 48 program is one that takes a few arguments from the
stack, combines them according to some mathematical expression, and returns the com­
puted result to the stack. For example, the distance between two points (x bY]) and
(X2,Yl) is given by

This program takes the coordinates of two points from the stack, and returns the dis­
tance between the two points:

« ROT SO 3 ROLLD so + y' »

The program assumes that x], Yb X2 and Y2 have been entered onto the stack, in that
order (x] in level 4). It removes the four values, and returns the computed distance to
level 1.

This program is short and efficient, hecause you (the programmer) did the work of
translating the mathematics into the HP 4Ws RPN logic. But writing a program this way
has two shortcomings:

1. When you develop the program, you have to keep track of the stack positions of
the various arguments as they are needed by the successive program commands.

2. After the program is written, it is difficult to decipher. Notice that the program
ohjects together bear little ohvious resemhlance to the original distance formula.

These prohlems hecome more severe as the number of arguments and the complexity of
the calculation increase. Imagine trying to alter the example program so that it works
with 3-dimensional points (x,y,z). Because the stack positions of all of the arguments
are changed, you have to rethink all of the stack manipulations, and almost rewrite the
program entirely.

The difficulty of managing stack objects is substantially reduced if your program stores
the objects in named global variables, then recalls the values by name as they are
needed. However, there are disadvantages to using global variables for temporary
storage in a program:

• You have to choose variahle names that don't conflict with those of other programs .

• The program has to purge the variables at the end to avoid leaving unneeded vari­
ables in the USER menu.

-220-

T ,
i

Problem Solving 8.5

The problem of program legibility is reduced if you represent the calculations by alge­
braic objects. Despite the virtues of RPN for interactive calculations, by and large peo­
ple are more adept at reading calculations in a form approximating conventional
mathematical notation than in RPN form. With this in mind, the HP 48 provides a very
simple method for creating programs that can be represented as mathematical functions,
using DEFINE. For example, to create a program for the distance formula, all you need
to enter is:

'DIST(x1 ,y1 ,x2,y2) =V(SQ(x2-x1) +SQ(y2-y1))' ~IDEFI

If you now look in the VAR menu, you will see a variable DIST, which you can use like
this:

3 4 7 '" DlSE L7" 5

If you recall the contents of DIST, you will see that DEFINE has actually stored the fol­
lowing program:

«~ x1 y1 x2 y2 'V(SQ(x2-x1)+SQ(y2-y1))'»

This program exhibits the form of a user-defined junction, which is a program with a
particular structure stored in a global variable. User-defined functions are designed to
provide a simple means of programming without the problems discussed above. Specifi­
cally, they are commonly defined by algebraic expressions for easy development and
modification, and they employ local variables, which exist only as long as the functions
are executing. The local variables are used to provide names for stack arguments, and
to minimize the need to manipulate lots of objects on the stack. User-defined functions
are called junctions because they act like built-in functions: you can use them like RPN
commands to compute from explicit stack arguments, or as prefix functions within alge­
braic objects, taking arguments from within parentheses.

Looking at the example DIST, the first part of the program ~ x1 y1 x2 y2 takes four
numbers from the stack and names them x1, y1, x2, and y2, by storing them in local
variables with those names. The algebraic object that makes up the rest of the program
computes a distance from the four stored values. You can easily modify this program
for three dimensions: edit the program to add two more local names, and add a term
for (z 2 - Z I? to the algebraic expression:

«~ x1 y1 z1 x2 y2 z2 'V(SQ(x2-X1)+SQ(y2-y1)+SQ(Z2-Z1))'»

·221-

8.5 Problem Solving

8.5.1 User-Defined Function Structure
In general, to create a user-defined function you store in a global variable a program
object with the following structure:

The variable's name subsequently acts as a user-defined function. Let's look at the
separate pieces of the general form, using the example DIST for illustration.

1. The first entry in the program is the symbol~. This symbol can be translated as
"take arguments from the stack, and assign them the following names ... " The - is
always followed by a sequence of local names. The end of the sequence of names
is indicated by the start of an algebraic object that must follow the names. - takes
one object from the stack for each name in the sequence. In DIST, there are four
names, x1, y1, x2, and y2, so DIST requires four input arguments. The objects
that - takes from the stack are matched up with the names in the order in which
they are entered. The first object cntered onto the stack, which was in the highest
numbered stack level (level 4 in DIST), is matched with the first name (x1) in the
sequence.

2. The names x 1 x 2 •.. XII in the series arc local names. The combination of a
local name and an object taken from the stack is called a local variablc. Local
names and variables arc described in dctail in section 9.7; for now, the important
thing to know is that thc variables exist only as long as the procedure that follows
the local name list is executing. Local variables are stored in special areas of
memory separate from the global variable memory; they don't appear in the VAR
menu.

3. The final part of the user-defined function structure is the algebraic expression
'f (x 1, X 2, ... ,XII)'. This expression is called the defining expression, and consti­
tutes the mathematical definition of the function. In the example, the defining
expression is 'V(SO(X2-x1)+SO(y2-y1))'. Within the definition of this alge­
braic, you can use the local names as many times as you want, just as you would
global names.

When you execute the name of a global variable containing a user-defined function, the
stored program is executed as follows:

1. Objects are removed from the stack and stored in local variables, one object for
each variable name.

2. The defining expression in the user-defined function is evaluated.

3. The local variables are purged.

-222-

Problem Solving 8.5

To illustrate the function behavior of a user-defined function, consider a user-defined
function SEC that returns the secant of a number:

«~ X 'INV(COS(x))'» 'SEC' STO.

You can execute SEC

• as an RPN command, e.g.

DEG 60 SEC J] 2 .

• as an algebraic function, e.g.

'SEC(60)' EVAL ,.1" 2.

Some other results:

'X' SEC 'INV(COS((X))' Symbolic arguments allowed.

RAD 'SEC(X)' 'X' a 'SIN(X)/COS(Xr2' Differentiation works.

'SEC(X) = Y' 'X' ISOL ~. f Unable to Isolate Error!

The last example shows that there is one important respect in which user-defined func­
tions differ from built-in analytic functions. There is no inverse automatically defined
for a user-defined function, so ISOL can not solve for a name that is contained in the
argument of the function.

One minor note: If the HP 48 IS 111 algebraic entry mode (section 4.3.1), pressing the
VAR menu key corresponding to a user-defined function appends the function name to
the command line, but does not add trailing (). Similarly, the EquationWriter does not
automatically add parentheses.

8.5.2 User-defined Functions as Mathematical Functions
It is interesting to note the extent to which a HP 48 user-defined function is a realization
of a mathematical function. That is, when you define a function such as
F (x) = 5x 2 + lx, you are stating that F is an operator that takes a single argument, and
returns a single result that is computed from the argument. The function's definition
has three parts:

1. The name F of the function.

-223-

8.5 Problem Solving

2. A name x used to identify the function's argument. For the purpose of the defini­
tion, x does not have a value.

3. The expression in x that indicates how the result is computed from x.

When the function is applied to a specific argument, that argument is substituted for the
name x in the defining expression, and the expression is evaluated. Thus

F(l) = 5'12 + 2·1 = 7

Each part of a function's definition has a corresponding representation III an HP 411
user-defined function:

I. The function's name is the name of the variahle in which the user-defined function
program is stored.

2. The argument name is the local name that follows the ~. A local name is
appropriate hecause the name is not intended to have a value except when the
function is actually heing evaluated.

3. The expression defining the function is represented hy the defining expression.

The example function F (x) = 5x 2 + 2>: is created in the HP 411 as:

« X '5*x A 2+2*x' » 'F' STO.

Then

'F(1)' EVAL C f 7,

and

In this example, we have considered a function of one variable. User-defined functions
defined in terms of more than one local name naturally correspond to mathematical
functions of more than one argument.

The command DEFINE makes the correspondence between user-defined functions and
mathematical functions even more obvious, since DEFINE creates a user-defined func­
tion variable directly from a function definition expressed as an algebraic equation. In
section 6.1.1, we descrihed the degenerate case where the left-hand side of the equation
is a name with no arguments. In symbolic execution mode (flag - 3 clear--see section
3.5.6.2),

-224-

Problem Solving 8.5

'name = expression , DEFINE

stores 'expression' unevaluated in a glohal variable name. In numeric evaluation mode
(flag - 3 set), expression is evaluated to a number hefore storing .

• Example:
'A= 10+ 10' DEFINE

stores' 10+ 10' in variable A in symholic execution mode; or stores 20 in variahle A in
numeric execution mode.

DEFINE docs a more extensive conversion if the left-hand side of its argument equation
is a name followed hy a parenthetical list of arguments:

'jimetiofl (name I ... flamcN) = cxpression' DEFINE

creates a user-defined function named jilllcti()}z hy storing

« - flame I ... Iwme" 'expression »

in a glohal variahle jimc/iofl. jilile/iofl and /lame I ... flame" must he all he glohal or
local names. (The conversion from the right-hand side of the expression involves a rein­
terpretation of the expression as if you had re-entered it via the command line, so that
names other than the function arguments Ilamei within the expression arc converted to
glohal or local names according to the current local memories--see section 9.7.)

• Example:
'F(x,y) =x+y+COS(8)' DEFINE

stores

«- X Y 'x+y+COS(8)'»

in the variahle F. x and yare listed as arguments on the left-side of the argument equa­
tion, so they are created as local names within the stored defining expression. 8 is not
listed as an argument, so it is entered as a glohal name (unless there is a currently exist­
ing local memory containing a local variahle 8. F is thus a user-defined function of two
variahles, which references the global variable 8.

If DEFINE's argument is not an equation with one of the forms described above, it will
return the error Improper Definition. Other errors not directly associated with DEFINE
may arise from the evaluation of expression in the 'name = expression' case (numeric

-225-

8.5 Problem Solving

execution mode), for which the error message returned by the erring command is
reported. Also, when the evaluation is successful but leaves fewer than two objects on
the stack for DEFINE, Too Few Arguments is reported but no command is identified.

8.5.3 Defining Programs
The preceding discussion has focused on user-defined functions defined by algebraic
expressions, since these are the easiest to create (with DEFINE) and correspond natur­
ally to built-in functions. However, you can also create user-defined functions that use a
defining program in place of the defining expression. An important use of this facility is
to create function versions of various RPN commands that you can usc in algebraic cal­
culations. For example, you can define a function from HMS +:

«~ X Y «x y HMS+»» 'HMSP' STO

Using HMSP, you can perform hours-minutes-seconds arithmetic within algebraic
objects, e.g. '5*HMSP(X,Y)'.

Note, however, that you can not evaluate user-defined functions defined this way with
symholic arguments, unless all of the commands in the defining program can accept
symholic arguments. For example, if you evaluate the algehraic '5*HMSP(X,Y)', both X
and Y must have rcal-numhcr values, since HMS + is not a function. Also, you can not
diffnentiate a user-defined function defined with a program.

User-defined functions defined either with expressions or programs arc a special case of
the more general usc of local variahle structures (section 9.7). To qualify at all as a
user-defined function, a program must begin with ~; otherwise, evaluating an expression
containing the program's name with an argument list will return the Invalid User Fun.c­
tion error.

8.5.4 Additional Examples: Geometric Formulae

• VCYL(r,h) returns the volume of a right-circular cylinder of radius r and height h from
the formula V = Trr2/z:

'VCYL(r,h) = Tr *SO(r) *h' DEFINE .

• SCONE(r,h) returns the curved surface area of a right cone of altitude h and radius r
from the formula A = Trr(r2 + h 2)Y2:

'SCONE(r,h) =Tr*r*Y(SO(r) +SO(h))' DEFINE.

-226-

1

Problem Solving 8.5

• CSEG(r,x) returns the area of a segment of a circle, where r is the radius, and x is the
perpendicular distance of the chord from the center, from the formula

TIr2 2 . -1 X
A = ---x~ -r SIn (-).

2 r

• PPER(n,r) computes the perimeter of an n-sided polygon inscribed in a circle of radius

r from the formula perimeter = 2n r sin~:
n

'PPER(n,r) = 2 *n*r*SIN(TI In)' DEFINE.

These user-defined functions return symholic results contammg TI, unless you clear
either !lag - 2 or -1 (section 1.5.6.2) to cause automatic numerical evaluation of TI.

-227-

9. Programming

Programming is the art of developing sequences of computer operations that can be
"replayed" automatically. Such sequences are called programs; on the HP 48, programs
are objects that you can use as arguments for various operations as well as executing
directly. "Programming" on the HP 48 then means the creation of program objects, and
the use of those objects to achieve various computational tasks.

Creating a program object consists of entering a sequence of objects that are to be exe­
cuted in order automatically, surrounding the sequence with« » delimiters. The
delimiters identify the sequence as a program, and prevent its immediate execution by
ENTER. When you name a program object by storing it in a global variable, you effec­
tively extend the calculator's command set: you can use the variable name just as you
would a built-in command. Imagine, for example, that you have created two program
objects named DOTHIS and DOTHAT. Then if you want to create a program that per­
forms both of the tasks done by DOTHIS and DOTHAT, you just enter « DOTHIS
DOTHAT », perhaps naming it DOBOTH. This process is unlimited--you can use
DOBOTH as an element of another program. DOTHIS and DOTHAT themselves may
be combinations of other program names. As a matter of fact, the HP 48 commands
that you use in your programs arc themselves programs written the same way, stored in
built-in libraries rather than in variables.

We have been using the term sequence to mean a series of objects (including com­
mands) that are executed in order. However, a more general definition of sequence
includes certain entries that are not objects but arc used in building program structures.
The non-object "entries," examples of which are FOR, DO, ~, and END, are called pro­
gram structure words. These are not objects, because you can't put them on the stack or
execute them individually, but must use them in certain specific combinations, like
FOR ... NEXT, or IF. .. THEN ... END. A complete combination, including the objects
between the program structure words, is called a program structure.

The more complete definition of sequence, then, is any series of objects and program
structures that can "stand alone," i.e. could constitute a program if surrounded by «
» delimiters. A sequence can be all of a program, or part of a program. For example,
III

« 2 IF A THEN B C END D »

1 2 is a sequence, B C is a sequence, and 1 2 IF A THEN B C END D is a
sequence. IF, IF A, and IF A THEN are not sequences, because the program structure
is not complete--you can not enter these by themselves without obtaining an Invalid
Syntax message.

-229-

g.o Programming

9.1 Program Basics
The basic structure of an HP 48 program is very simple:

« program body».

The « and » are the program object delimiters that serve to identify this object as a
program. Program body is the sequence of objects and program structures that make up
the logical and computational definition of the program.

9.1.1 The«» Delimiters
The « and » that surround HP 48 programs serve a dual purpose. First, they are the
delimiters that identify an object as a program. When you enter a program into the
command line, the « tells the HP 48 to create a program object from all of the objects,
commands, names, etc., that follow, up to the next matching ». Then, when the HP 48
displays a program object after it has been created, the « and » identify the object to
you as a program.

The second role of these delimiters is to serve as logical "quotes" (see section 3.R) that
postpone execution of a program sequence. When« is encountered in program or
command line execution, it is interpreted by the HP 48 to mean "put the following pro­
gram object on the stack." This behavior of« allows you to include programs within
other programs:

« objects » EVAL

executes objects, but

« « objects » » EVAL

leaves the program« objects » on the stack. Notice that these are paired delim­
iters; for every «, there is always a ». The trailing» ends the definition of the pro­
gram started by the matching «. When you enter a program into the command line,
the HP 48 reminds you of this necessary pairing: pressing ~ 1« »1 enters both delim­
iters (on separate lines) with the cursor in between. The key also activates program
entry mode, in which command keys echo their command names to the command line
rather than executing the commands. This makes the key the HP 48's closest analog to
the more traditional program mode keys you find on other calculators (such as IPRGMI
on the HP41).

-230-

Programming 9.1

9.1.2 The Program Body
The "body" of an HP 48 program, that is, everything between the « and the », can
consist of any combination of objects and program structures:

• Data objects;

• Quoted names and procedures, which go on the stack like data;

• Commands--RPN commands and functions;

• Unquoted names--which act like user-defined commands;

• Program structures--loops, conditionals, and local variablc structures.

To "run" a program, you execute the program objcct, either directly with EVAL, or more
commonly, indirectly by executing the program's name. In general, whcn a program is
exccuted, all of thc items from the above list that constitute the program body are exe­
cuted sequentially. The nominal order of execution is start-to-finish, or "left-to-right" in
the command line order in which the program was entered originally. Within a pro­
gram structure, there may be repetitive loops or conditional jumps. Of course, therc's
nothing remarkable about this program flow--any programming language exhibits similar
orderly exccution.

Crcating an HP 48 program is straightforward:

1. Press @2l1« »1;

2. Press the keys for, or spell out, the objects you want the program to execute, III

the same order used when you perform thc calculation manually; thcn

3. End the program entry by pressing IENTERI. Alternatively, you can use the cursor
keys to move the eursor past thc final », to continue with additional command
line entries.

4. To name a program, enter a name (quoted) and press ISTOI. You can consider
the resulting variable as a named program.

If you have a computer connected to the HP 48 via the serial port, you can also write
programs (and other types of objects) on the computer. There you may use any text
editor that can generate text-only (ASCII) files. When you transfer the file to the
HP 48, the calculator translates the text into a program object exactly as if you had
typed the text into the HP 48 command line. There are several advantages to using the
computer for program development:

• The computer's keyboard provides for easier text entry.

-231-

9.1 Programming

• The larger display allows you to format your programs in a more legible manner
(see section 1.3).

• Most text editors provide search-and-replace and other editing features to speed up
program entry.

• The computer text file is a backup copy of your program that you can retrieve if you
purge or lose the program in the HP 48.

• You can include comments in your program text. A comment is text that serves to
annotate the program or any of its parts, but is not included in the execution action
of the program. Comments, delimited by "(OJ" characters (section 4.3.3.1), are
stripped from a program by ENTER, so that they serve no real purpose when you
enter a program in the command line. The comment capability was included in the
HP 48 specifically for program editing on computers.

The simplest programs are those which contain no program structures. Such programs
only contain objects to be executed one after the other, starting with the first object
after thc «, and ending with the last object just before the ». Examplcs:

1.« 2 3 » 'P123' STO crcatcs a program namcd P123 that enters
the numbers 1, 2, and 3 onto the stack.

2. « 2 / SIN » 'HSIN' STO creates a program named HSIN, that
returns the sine of 1/2 of the number in level I.

3. « + + SO » 'SUMSO' STO creates SUMSO, which adds three
numbers from the stack and squares the result.

You can alter the basic start-to-finish execution flow of programs by adding program
structures that define branches and loops. Branches are forward jumps in a program,
that cause program sequences to be skipped. Loops contain backward jumps, which
cause program sequences to be repeated one or more times. These structures are
described later in this chapter.

9.1.3 Structured Programming
A property of any HP 48 program that is common among many computer languages, but
may be unfamiliar to programmers of other types of calculators, is its well-determined
"entrance" and "exit." That is, in any program there is only one point--the start--where
execution can begin. Similarly, there is only one exit, or point at which a program com­
pletes execution. A diagram to represent the execution flow in and out of an HP 48
program is very simple:

-232-

Programming 9.1

IN----o""~1
I

« Body » f-----o3".OUT

This diagram is elegantly simple compared with one that represents the program flow in
an HP41 or BASIC program. In these languages, there is no limit on the number of
entrances and exits in a single program. The principal program constructs that make
this possible are labels and GOTO (go to) commands. A GOTO is an unconditional
jump, with no return, to a label (or line number in some calculators and in BASIC).
Using labels and GOTO's, program execution can jump around from program to pro­
gram, in and out of portions of programs, or round and round within a single program.
At first glance (and more, if you're used to programming this way), this capability seems
like an advantage. You may wonder why the HP 48 does not provide the same capabil­
ity.

The answer is that the HP 48 is designed for stmctllred programming. Structured pro­
gramming consists of writing small programs as building blocks, or modules, from which
bigger programs are assembled as series of subroutine executions. A subroutine is a
program that is executed, or called, from within another program, and which returns to
the original calling program when it is finished. Bigger programs themselves may
become suhroutines for even bigger programs, and so on. Each program, at every level,
has a single entrance and exit; there is no jumping in and out of programs at intermedi­
ate points. Structured programming has the following advantages:

• Programs are easy to write. Each program can be designed to fulfill a single task,
and can thus consist of relatively few steps. If a program gets too long, you just
divide it into smaller programs .

• Programs are easy to decipher. By choosing meaningful names for subprograms,
you can read a program almost as text. For example, a program might look like
this:

« GETINPUT DOMATH
IF BIG

»

THEN IGNORE
ELSE SAVE
END

It is easy to understand what this program does. It gets input (GETINPUT), then
does some calculations (DOMATH) on that input. Next, it checks a result to see if
it's too large (IF BIG); if so, it discards the result (THEN IGNORE), otherwise saves
it (ELSE SAVE). At this level, you can see the overall structure of the program. To

-233-

9.1 Programming

see more detail, you can examine the individual subroutines. For example, BIG must
be a program that tests the results returned by DOMATH, and returns a trne flag if
the results are too big according to some criterion. BIG might be something like
this:

« DUP2 + LIMIT > »

This program makes copies of two numbers in levels 1 and 2, then adds them and
tests to see if the sum is greater than the value of LIMIT (which might be a number,
or another calculation to perform, etc.) .

• Programs are easy to alter. In the above example, you can completely change the
internal definition of BIG, without worrying about the main program. All you have
to do is ensure that BIG works the same from an external point of view--it must take
the right number of objects from the stack, and return the right number, etc. Simi­
larly, you can change the value of LIMIT from a specific number to a program that
computes a result, without any change in the design of BIG.

In a programming language that permits GOTO's into the middle of a program, any
modification of a program must ensure that the correct entry conditions are met at
any point at which execution can start. This is especially difficult to manage in
languages like BASIC, where a GOTO can jump to any line in a program, with no
label or other indication to remind the programmer that execution may start at that
line .

• Programs can be written without any regard to the internal behavior of programs
that call them, or programs that they may call. All that matters about a program is
its input and output, not the steps that it uses in its execution.

The last point is a key concept in HP 48 structured programming. A program is defined
externally only in terms of its input and output:

1. The number and type of objects it takes from the stack;

2. The number and type of objects it returns to the stack;

3. The variables that it uses;

4. Flags that are tested or changed.

From the point of view of one program calling another as a subroutine, the first pro­
gram doesn't have to care at all about how many stack levels or additional subroutine
returns are needed by the subroutine. It just has to be sure to provide the correct
inputs for the subroutine, and know where to find the results returned by the subroutine
(usually on the stack). The calling program also can depend on having program

·234-

1
I

"

Programming 9.1

execution return to it after the subroutine is finished, no matter how many other sub­
subroutines are called by the subroutine.

On the HP 48, there is no structural difference between a program and a subroutine.
Calling a particular program a subroutine is only a matter of convention, often deriving
from the circumstance that the program uses very particular arguments or returns spe­
cial results, that make it unlikely to be used as a stand-alone program.

Note also that the HP 48's ability to create program objects means that a program can
contain its own subroutines--programs that are created and stored in local variables or
even left on the stack for repeated execution, then discarded when the main program
terminates.

9.2 Program Structures
A simple program consisting of a sequence of objects can be broken into two or more
programs at any point in the sequence. For example, the program

« 5 * 6 + 10 »

is equivalent to the two programs

« 5 * » « 6 + 1 0 »

executed consecutively.

A program stmcture is a program segment that can not be broken into stand-alone sec­
tions. A user-defined function (section 8.5) is an example of a program structure; for
example, the program

« ~ X '2*x+3' »

can not be divided like this:

« ~ x » « '2*x+3' »

The first part would return a Invalid Syntax message when entered. Similarly, you can't
break

« 5 FOR n n SO NEXT »

into

« 5 FOR » « n n SO NEXT »

The FOR and the NEXT must be in the same program.

-235-

9,2 Programming

Program structures are defined by program strncture words. These words are similar to
object delimiters, in that they do not themselves represent objects, but are instructions
to the HP 48 to build command line text into specific structures. As in the case of
object delimiters, the structure words always appear in specific combinations and satisfy
certain syntax rules.

Table 9.1. HP 48 Program Structures

Structure Type

IF ... THEN ... ELSE...END Conditional

CASE ... THEN, .. END, .. END Conditional

START.. , NEXT jSTEP Definite Loop

FOR index .,. NEXT jSTEP Indexed Definite Loop

DO, .. UNTIL. .. END Indefinite Loop

WHILE.,.REPEAT. .. END Indefinite Loop

Typical Use

Program decisions

Selecting among
multiple choices.

Execute a sequence a
specified number of
times.

Execute a sequence once
for each value of an
index.

Repeat a sequence until
a condition is satisfied.

While a condition is
satisfied, re peat a
sequence.

- ... names ... procedure Local Variable Structure User-defined functions.

IFERR.,.THEN .. ,ELSE .. ,END Error trap

Creating local variables.

Handle expected and
unexpected command
errors.

Table 9.1 lists all of the built-in HP 48 program structures and their uses. Libraries can
add additional structures to the list.

Before studying the various program structures, we need to describe HP 48 test com­
mands, which along with the flags introduced III section 7.1, are key concepts in

-236-

Programming 9.2

understanding the execution of program structures.

9.3 Tests and Flags
A calculator program "asks a question" by executing a test command. A test command
is any command that in effect returns true or false as a result, which then may be used
to choose a particular program branch to execute. In the HP 48, true and false are
represented as stack objects by real number flags, zero for false and any non-zero value
for true (when returned by a command as a result, 1 is used for true).

With these ideas in mind, we can make the following definitions:

Test:

Logical operator:

Conditional:

A command that returns a flag to the stack. Examples: SAME,
= =, FS?

A function that makes a logical combination of two flags (AND,
OR, XOR), or inverts a flag (NOT), and returns a new flag.

A program structure that includes a structure word which uses a
flag as an argument, and causes a program branch according to
the flag's value. HP 48 conditionals are IF, CASE, DO, and
WHILE structures.

Notice that a test and the corresponding conditional branch arc separate operations. To
permit this separation, a test command returns its result in the form of a (real-number)
flag on the stack, which can then be manipulated like any other stack object. Consider a
typical test command, >. > compares real numbers in levels 1 and 2: if the number in
level 2 is greater than that in level 1, > returns 1 (true); it returns 0 (false) if the level 2
number is equal or smaller. For example, to compare the values of X and Y in a pro­
gram, you use the sequence

X Y >.

This returns 1 (true) if X is greater than Y, or 0 (false) otherwise.

In a conditional structure, one particular structure word actually makes the branch deci­
sion, taking a flag from the stack for this purpose:

• the THEN in IF. .. THEN ... (ELSE ...) END (section 9.4.1).

• each THEN in CASE. .. THEN ... END ... END (section 9.4.3)

• the END in DO ... UNTlL. .. END (section 9.5.2.1).

-237-

9.3 Programming

• the REPEAT in WHILE ... REPEAT ... END (section 9.5.2.2).

But note that you can include any number of intervening objects and commands
between the point at which the flag is put on the stack, and the structure word that uses
the flag for a branch decision. This separation of tests and decisions makes possible the
use of logical operators to combine flags. For example, the logical operator AND takes
two flags from the stack and returns a true flag if both of the original flags are tme, and
a false flag otherwise. The sequence

x Y > Y Z > AND

returns 1 only if X is greater than Y, and Y is greater than Z. Furthermore, since the
logical operators and most tests (except SAME) are functions, you can rewrite the above
sequence in a more legible manner:

'X>Y AND Y>Z' ~NUM.

The -NUM converts the algebraic expression into a real number suitable for use as a
flag. If the flag is intended for use in a conditional structure, you can omit the ~NUM.
All of the structure words listed ahovc automatically perform a numerical evaluation on
an algebraic argument. For example,

IF 'X>1 AND Y>1' THEN

and

IF X > Y > AND THEN

are equivalent, with the former getting better marks for legibility.

You can even store a flag value then retrieve it for later use by a conditional. Rather
than using an ordinary variable, you can use a user flag as the storage location: the flag
number replaces a variable name, and the number 1 or 0 is the value. FS? plays the
role of RCL for a user f1ag--it transfers the flag value to the stack. Similarly, SF and CF
store the values 1 and 0, respectively, into a user flag. There is no single command to
store a stack flag directly into a user flag, but the sequence

IF SWAP THEN SF ELSE CF END

will accomplish that, where the flag number is in level 1 and the new flag value IS III

level 2.

-238-

Programming 9.3

One by-product of using real numbers as flags for conditionals is to make it easy to test
a real number against zero. In the sequence

IF 'X,*O' THEN A ELSE BEND,

the '* 0 is superfluous. Instead, use

IF X THEN A ELSE BEND.

9.3.1 HP48 Test Commands
The HP 48 test command set is as follows:

• <, >, :S:, and 2:, for comparing the numerical or lexicographical order of two
objects. These operators are applicahle to real numbers, binary integers, and binary
integers, strings, and symbolic arguments. Strings are ordered hy their character
values, left to right; extra characters count as "higher," e.g. "AA" "A" > returns
true.

• SAME, = = and '*, for testing equality and inequality. These commands may he
used with any types of arguments.

• The flag test commands FS?, FC?, FS?C, FC?C, discussed in section 7.1.1.

For those commands that compare two arguments, the order of the arguments is con­
sistent with the order for other HP 48 functions: the arguments are entered onto the
stack in the same order as they appear in algebraic expressions. For example, consider
the "greater-than" operator >. In an algebraic expression, "is A greater than B?" is
written as "A > B" A is the first argument, reading left-to-right; B is the second. The
comparison is true if the first argument is greater than the second. If you rewrite the
infix operator > in Polish notation, the expression becomes '> (A,B)'. Converting to
RPN, this becomes A B >, which indicates that A should be entered into the stack
before B. When> executes, A should be in level 2, and B in level 1.

9.3.2 Equality
The HP 48 distinguishes two types of equality, physical equality and logical equality.
SAME tests the physical equality of two objects, i.e. whether the two have the same bit
pattern in memory. By contrast, for real and complex numbers, binary integers, units,
and symbolic objects, = = and '* test the logical equality of their arguments objects,
using the logical values represented by the objects. In most circumstances, the two tests
return the same result--if two real numbers have the same numerical value, they also
have the same bit patterns. However, there are cases where the two tests will differ:

·239·

9.3 Programming

• = = and *' can compare real and complex numbers numerically; a real and complex
number can be equal if the imaginary part of the latter is zero and the real part is
the same as the real number: (5,0) 5 = = L~ 1. SAME always returns false when
comparing objects of different types.

• = = is a function, and thus returns a symbolic result when applied to symbolic argu­
ments. SAME compares the original objects themselves, always returning a flag.
Thus, '1 +2' 3 = = returns the expression '1 +2= =3' (which evaluates to a tme
flag), whereas' 1 + 2' 3 SAME returns a false flag.

• When comparing binary integers, = = ignores leading zeros and compares only the
numerical values, so that the relative wordsize of the two integers does not matter.
For SAME to return a true flag, the two integers must have the same wordsize as
well as the same value.

For other types of objects, = = and *' test physical equality in the same manner as
SAME. The interpretation of physical equality is so strict that SAME can surprise you
by returning false in cases where two objects are identical in all outward appearances.
For example, if you execute

'FOO' STO FOO ~LlST { },

you obtain two lists that certainly look the same. However, SAME and = = return 0 for
these lists. This is because the object 1 is one of a substantial number of objects that
are built into the HP 4Ws permanent ROM. For sake of memory efficiency, these built­
in objects are not copied into RAM except when they are stored individually in a global
or port variable. Otherwise, they are represented on the stack and in composite objects
(section 3.3) by 2.5-byte pointers. In the first list in the above sequence, the 1 is con­
verted to a RAM object (10.5 bytes) when it is stored, whereas the 1 in the second list is
a pointer. SAME therefore dutifully reports that the two objects are different. BYTES
(section 12.5.1) applied to the two lists also returns different sizes and checksums.

A similar analysis applies to units created by UBASE and UFACT: for example,

1_m DUP UBASE SAME n 0

When UBASE rebuilds a unit object from base units, the characters (in this case, the
"m") in the unit part are taken from a ROM table. A 1_m created by any other means
does not contain the ROM character. In this case, however, = = does return true for
these two objects, since this function tests logical equality for unit objects.

It is also important to distinguish = = and =. = is 1I0t a test command, so it is funda­
mentally different from = =, which is a test. = is a function that creates an equation

-240-

Programming 9.3

from two expressions. Its execution does not return a flag; in symbolic execution mode,
it does nothing other than evaluate its arguments. In numeric execution mode (includ­
ing using ~NUM) it acts the same as -, returning the numerical difference of the two
sides of the equation.

= =, on the other hand, is a test, and always returns a flag when executed. = = is pri­
marily intended for ordinary numerical equality comparisons. You can use = = in alge­
braic expressions as an infIx operator, just like <, >, etc. = = and = must have dif­
ferent names to distinguish their quite different meanings, and to prevent ambiguity
within algebraic expressions. Note that A=B is an "assertion," whereas A= =B is a
"question."

9.4 Conditional Branches
The program decisions discussed in the preceding sections are most frequently used in
conjunction with program branches, where execution can proceed along one of two or
more paths. The HP 48 does not provide for llIu;onditional branches, in which program
execution jumps out of the middle of a program without any test. Such branches are
used in some programming languages to minimize program size through reuse of steps
common to more than one part of a program. On the HP "'II, this is achieved by writing
the common part as a suhroutine that can he called by other programs.

A Conditional branch can he one of the following types:

• A simple branch consisting of a choice between one of two or more paths, where one
or more program sequences are skipped as execution proceeds forward.

• An iteration loop, using backwards jumps to repeat execution of a sequence one or
more times.

• An exit from an iteration loop.

9.4.1 Simple Branches: The IF structure.
The most straightforward type of branch involves a choice between executing two dif­
ferent program sequences. On the HP 48, this is implemented with the IF stnlcture, a
program structure that has the general form:

IF test-sequence THEN then-sequence ELSE else-sequence END

You can read this structure as "if test-sequence is true (returns a true flag), then execute
then-sequence and jump past the END. If false, skip the then-sequence and execute else-
sequence." I

-241-

9.4 Programming

• Example. If the ~ [IDID key has a user key assignment, display the assignment; other­
wise show Unassigned.

RCLKEYS DUP Get the assignment list.
IF 41.2 POS DUP
THEN 1 GET
ELSE DROP2 "Unassigned"
END

If keycode 41.2 is in the list...
... then get the assigned object.
... otherwise, enter a string.

DISP FREEZE Display the result.

This sequence uses the real number returned by POS both as a flag to indicate whether
the search was successful, and also, if non-zero, to specify the keycode's position in the
list.

The ELSE else-sequence portion of an IF structure IS optional. For cases where the
else-sequence is unnecessary, you can use this form:

IF test-sequence THEN then-sequence END,

which translates to "If test-sequence is tme, execute then-sequence; otherwise, skip past
the END."

• Example. Order two numbers so that the smaller one IS returned III levell, the
greater in level 2.

DUP2
IF <
THEN SWAP
END

Copy the two numbers.
Test if the first is less than the second.
If so, switch the numbers.

• Because it is THEN that actually removes a flag from the stack and makes the branch
decision, the position of the IF in the sequence that precedes THEN is unimportant:

2 IF
1 2 >
IF 2

> THEN
IF THEN
> THEN

and
and

all produce the same result. You can choose to position the IF wherever you want to
make a program the most readable. (The most memory-efficient form has a single
object between the IF and the THEN. Thus of the three forms above, the first uses the

-242-

Programming 9.4

least memory. See section 12.5.)

9.4.2 RPN Command Forms
An alternate means of achieving IF structure branching is provided by the IFTE and 1FT
commands. For these commands, the various sequences included in an IF structure are
entered as stack arguments, either as single objects or programs (or lists--see section
11.5.4). That is,

test-sequence «then-sequence» «else-sequence» IFTE

is equivalent to

IF test-sequence THEN then-sequence ELSE else-sequence END.

Similarly,

test-sequence «then-sequence» 1FT

is equivalent to

IF test-sequence THEN then-sequence END.

To use IFTE, you put a flag in level 3, an object (usually a program) representing the
then-sequence in level 2, and an object representing the else-sequence in level 1. IFTE
tests the flag; if the flag is tme (non-zero), the else-sequence is dropped, and the then­
sequence is executed. If the flag is false (zero), the then-sequence is dropped, and the
else-sequence is executed. 1FT works much the same way: the flag must be in level 2,
and a then-sequence in level 1. If the flag is tme, the then-sequence is executed, other­
wise it is dropped .

• Example. Split a real or complex number into its real and imaginary parts.

RC-R Real/Complex to Real 8A8F

level I I level 2 level I

x U" x 0

(x,y) OJ X Y

« DUP TYPE Get the input type.

« C-R » Complex case (type * 0).

0 Real case (type O)--just push zero on the stack.

IFTE Execute appropriate choice.

»

-243·

9.4 Programming

There is no particular fldvantage within a single program to using 1FT or IFTE rather
than the corresponding IF structure, so which form you use is mostly a matter of taste.
However, the RPN command forms have one advantage for more sophisticated pro­
gramming: their use allows you to place the test-sequence, the then-sequence, and the
else-sequence in separate programs or program structures. If you use an IF structure, all
must be contained in the same program.

IFTE is also a function, which means you can use it in algebraic objects as well as in
programs. It is a preftx function of three arguments:

I FTE (test-expression, then-expression, else-expression)

Notice that the arguments are in the same order as the staek arguments when IFTE is
executed as an RPN command. All three arguments are ordinary expressions. Test­
expression is evaluated, and its value is interpreted as a flag. If the flag is true, then­
expression is evaluated; if the flag is false, else-expression is evaluated. Typically, the
test-expression contains a comparison operator, so that evaluation automatically returns a
flag .

• Example. 'IFTE(X= =O,1,SIN(X)/X)' computes SIN(X)/X, returning the value 1 when
X is zero.

1FT has no algebraic form. This is because algebraic objects must return a result when
evaluated--an algebraic conditional can't "do nothing" if the test flag is false.

9.4.3 The CASE Structure
The IF structures described in the previous section are convenient for branching that is
based on a single test to select between two choices. While it is possible to handle any
more elaborate combinations of tests and choices with "nested" IF structures, the
overall structure can get rather convoluted. For more straightforward handling of multi­
ple tests and choices, the HP 48 provides the CASE structure, which has the following
general form:

CASE
test -sequence 1 THEN then -sequence 1 END
test -sequence 2 THEN then -sequence 2 END

test-sequencen THEN then -sequencen END
else -sequence

END

·244-

~
I
1

I

(

Programming 9.4

You can read the CASE structure as "execute test-sequence!, then test-sequence2, etc.,
until one test-sequence returns tme. Then execute the corresponding then-sequence, and
skip to past the final END. If no test-sequence returns true, then execute else-sequence."

• Example. The program COUNT4 is a simple four "bin" counting routine.

COUNT4 Count in 4 Ranges 8F8C

level 1 I level 1

x u

« CASE

DUP 0 < THEN DROP 1 END Range 1 if x<O.

DUP 0 -- THEN DROP 2 END Range 2 if x = O.

1 :S THEN 3 END Range 3 if O<x:s l.

4 Other tests failed, so x must be

greater than 1 (range 4).

END

'COUNTS' SWAP DUP2 Make two copies of the vector name

and the index.

GET 1 + PUT Get the element, add 1, put it back.

»

COUNT 4 tests an argument x to see in which of four ranges its value lies. The total in
each range is stored in the four-element vector COUNTS. The elements of the vector
represent these ranges:

Element
1
2
3
4

Range
x<O
x=O

O<x::Sl
x>l

Another way to make a multi-case choice is to create a list of programs, then select one
of the programs from the list according to an index. For example, this sequence takes a
real number from the stack, and executes a name corresponding to the number:

{ ONE TWO THREE FOUR FIVE}
SWAP
GET
EVAL

-245-

List of name choices.
Put the index in level 1.
Get the indexed choice.
Execute the selected name.

9.5 Programming

9.5 Loops and Iteration
A loop is a program structure containing a sequence that is iterated--executed more than
once. In a definite loop, the number of iterations is known in advance. In an indefinite
loop, the iteration continues until some specified condition is met, after which execution
exits from the loop and continues with the rest of the program.

9.5.1 Definite Loops
The most common form of definite loop structure is the FOR ... NEXT loop. This kind
of loop is appropriate when you want a program sequence to repeat several times, mak­
ing use of an index that is incremented by 1 at each iteration of the sequence. The gen­
eral form of a FOR ... NEXT loop is:

start stop FOR name sequence NEXT,

where

• start is the (real number) initial value of the index.

• stop is the (real number) final value of the index.

• FOR identifies the start of the structure; it removes the start and stop values from
the stack.

• flame is the name of the (local) variahle that contains the index.

• sequence is any program sequence, which can contain any number of uses of name.

• NEXT is the structure word that identifies the end of the sequence. It increments
the index by one, then tests its value against the stop value to determine whether to
repeat the sequence.

You can read a FOR ... NEXT loop as "For each value from start through stop of an
index named flame, execute the sequence that ends with NEXT."

• Example. Enter onto the stack the squares of the integers from 1 through 100.

1 100
FOR n

n SO
NEXT

Start and stop values.
Create a local variable n, with initial value 1.
Square the current index.
Increment n by 1. If n::o: 100, loop again.

-246-

Programming 9.5

A few observations:

• Stan and stop as shown above are not part of the FOR ... NEXT program structure.
FOR expects to take two real numbers from the stack, but those numbers can be
entered or computed at any time in advance of the FOR, as long as they are in levels
1 and 2 when the FOR executes.

• The stan and stop values are removed from the stack by FOR. They arc not accessi­
ble afterwards; if a program needs their values for other purposes, it should copy
them or store them in variables before executing the FOR.

• The index is kept in a local variable identified by the name that immediately follows
FOR. You can return the current value of the index by executing its name. You can
also change the value of the index after the loop has started, by storing a real
number into the local variable. The naming and use of the index variable are suh­
ject to the same restrictions as local variables created by ~ (section 9.7). After the
loop is finished, the index variable is automatically purged.

• Thc name following a FOR is not part of the sequence that is repeated. For exam­
ple,

10 FOR n n NEXT

puts intcgcrs 1 through 10 on thc stack, but

10 FOR n NEXT

accomplishes nothing.

• The sequence between FOR name and NEXT always executes at least once, even if
the specified stop value is less than the stan value.

• The start and stop values don't have to be integers. NEXT always incremcnts the
index by 1; the loop will repeat as long as the index is less than or equal to the stop
value.

.5 .6 FOR n sequence NEXT

executes sequence oncc, with n = .5.

• The combination FOR name acts like a single operation when you single-step (sec­
tion 12.2.2) the FOR.

• Stan, stop, and step can be algebraic objects, as long as they evaluate to real
numbers.

-247-

9.5 Programming

9.5.1.1 Summations
A common form of iteration is a summation, in which successive values are accumulated
to a total. To add the squared integers computed in the previous section, we can modify
the example as follows:

o
1 100
FOR n

n SO
NEXT

Initialize the total.
Start and stop values.
Create a local variable n, with initial value 1.
Square the current index, and add to the total.
Increment n by 1. If n:S 100, loop again.

Executing this sequence returns 338350.

For cases where the successive terms in the sum can be represented by algebraic expres­
sions, the HP 48 provides the summation function L. 2: takes four arguments:

index start stop summand 2: 1.2" sum.

Index must be a name, and the other three arguments can be algebraic ohjects or any
objects permitted within an algehraic object. Summand, of course, is usually a function
of index.

As well as being more compact and legible compared to the FOR ... NEXT form, L is
also a function; used itself in an algebraic ohject, it is a prefix function with this syntax:

L (index = start, stop, sUlIlmand).

(Notice the required = sign). In standard mathematical notation, and in the Equation­
Writer display, this translates to

stop

2: summand.
incil':x =stan

Summand is usually an expression containing index. Using the summation function, the
sum of squares computed above can be obtained by evaluating

2:(n = 1,100, n'2).

When 2: is evaluated, it evaluates start and stop, then returns:

• The same sum except with the evaluated limits, if either of the evaluated limits is
still symbolic;

-248-

1

Programming 9.5

• A sum of symbolic terms, if both limits evaluate to numbers and the summand con­
tains symbolic arguments other than the index, thus

'L:(1=1,2,I+A)' EVAL L~ '1 +A+(2+A)';

• A numeric sum, if the limits and the summand all evaluate to numbers, thus

'L:(1=1,2,1+1)' EVAL U" 5.

A sum can be differentiated:

'L:(I=A,8,F(X,I))' 'X' a LT 'L:(I=A,8,aX(F(X,I))'

A sum may also be integrated symbolically. When the integral is evaluated, if the sum­
mand is an integrable pattern, the result is the (unevaluated) sum with the summand
replaced hy its definite integral. If the summand is not integrable, the result retains the
sum as the integrand (i.e. the integral is not pushed inside the sum).

9.5.1.2 Varying the Step Size
The FOR ... STEP program structure is a variation of FOR ... NEXT, which allows you to
increment the loop index by amounts other than one, including negative values. A
FOR ... STEP structure looks like this:

start stop FOR name sequence STEP.

Start, stop, name, and sequence play the same roles as in FOR ... NEXT loops. The struc­
ture word STEP plays a similar role to NEXT, but allows you to control the amount by
which the index is incremented (or decremented). STEP takes a real number from level
1, and adds it to the current value of the index. Then:

• If the step value is positive, the loop repeats if the index is less than (more negative)
or equal to the stop value.

• If the step value is negative, the loop repeats if the index is greater than (more posi­
tive) or equal to the stop value.

Notc that since STEP takes a number from the stack, sequence must end with the step
value on the stack (the step value docsn't have to be the same each time) .

• Example. The program DFACT computes the double factorial n !!=n (n ~ 2)(n ~ 4) ... 1,
where n is an integer.

-249-

9.5 Programming

o FACT Double Factorial 605F

level 1 I level]

n ([¥ nil

« 1 Initialize the product.

SWAP 2 Loop from n down to 2.

FOR m m is the index.

m * Multiply the product by m.

-2 STEP Decrement m by 2. Repeat if m2:2.

»

9.5.1.3 Looping with No Index
In some circumstances, there is no need for an index when a program sequence is to be
repeated a fIxed number of times. In such cases, you can use START in place of FOR.
START. .. NEXT and START. .. STEP are the same as FOR ... NEXT and FOR ... STEP,
respectively, except that the loop index is not accessible. The index name that must fol­
low FOR is not used with START (if a name does follow START, it is just treated as part
of the loop sequence, and has nothing to do with the loop index) .

• Example. The program VSUM sums the fl elements of a vector.

VSUM Slim Vector Elements ACD8

level] I level]

I vector I u- sum

« OBJ- OBJ- Put the elements on the stack, with the

number of elements in level 2, and a 1 in

level 1.

SWAP OVER - Loop start and stop values for n -1 addi-

tions.

START + NEXT Execute + n -1 times.

»

9.5.1.4 Exiting from a Definite Loop
Definite loop structures are designed to repeat a predetermined number of times.
There is no "exit" command that can cause program execution to jump out of a loop
before it has completed the specified number of iterations. Ordinarily, you should use
an indefinite loop (section 9.5.2) for calculations where you don't know in advance how

-250-

Programming 9.5

many iterations are needed. However, indefinite loop structures don't provide an
automatic index like that in FOR ... NEXT jSTEP loops, so for some problems you may
find it more convenient to use a definite loop with a contrived exit rather than an inde­
finite loop where you have to provide your own index.

All you have to do to cause a loop to exit before the prescribed number of iterations is
to store a number greater than or equal to the stop index value into the index variable.
In loops with a positive step size, an obvious choice for an exit value is MAXR, the larg­
est number that the HP 48 can represent, although you have to be sure to convert the
symbolic constant into a real number. For loops with a negative step, you can use
-MAXR.

Typically, the exit from a definite loop is taken as the result of a test. The general form
of such a loop is as follows:

start stop
FOR Il sequence

IF test
THEN MAXR ~NUM 'n' STO
END

NEXT

This structure executes sequence for every value of n starting with start, and ends when
either n is greater than stop, or test returns a true flag.

N

• Example. Determine the value of N for which 2: n 2 2: 1000.

o 1 10000
FOR n

n SO +
IF DUP 1000 >
THEN n

MAXR -NUM 'n' STO
END

NEXT

n=i

Initial vdlue of sum; sIan and stop values.
Loop index is n.
Increment the sum.
Is the sum 2: lOOO?
The current value of the index is N.
Set the index past the stop value.

Executing this sequence returns the sum 1015, and the value 14 for N.

9.5.1.5 Generating Sequences
The example in section 9.5.1.1 showed the use of a FOR loop to generate a sequence
consisting of the squares of the integers from 1 to 100. A natural next step after such

-251-

9.5 Programming

an operation is to combine the results into a list, for easier storage or other manipula­
tions of the sequence as a whole. The generation and combination of such sequences is
combined in the command SEQ. This command requires five arguments:

procedure name st',lrt stop step SEQ u· {sequence}.

Procedure can be either a program or an algebraic object, name can be a global or a
local name, and stan, stop, and step can be any type of object that will evaluate to a real
number. SEQ evaluates procedure for each successive value of name over the range
stan through stop, incrementing name by step at each iteration. The results of all of the
evaluations are combined into the final result list. For example:

'x"'3' x 12 2 SEQ u {1 9 25 43 81 121}

When SEQ executes, it actually runs one of the following programs, as if you had
entcrcd it from the command line:

stan stop FOR name procedure EVAL step STEP,

or, if step is thc object 1:

stan stop FOR !lame procedure EVAL NEXT.

This has several implications:

• Thc procedure is rc-crcated with !lame as a local name. This means that any uses of
!lame within procedure must be explicit, not indirect through other variables in pro­
cedure.

• The arguments stan, stop, and step follow the same rules and logic as their counter­
parts in ordinary FOR loops (sections 9.5.1).

• SEQ takes longer to execute than an equivalent sequence using a FOR loop, because
of the process of rewriting procedure to incorporate a local !lame. This delay
becomes relatively less important as the number of iterations increases.

SEQ records the depth of the stack when it starts. When the iterations are complete,
any objects that have been added to the stack are combined into the result list. If there
are none, or the stack has fewer objects than previously, no list is returned. 1
Despite a small speed penalty, SEQ does have some advantages over a FOR loop. \
Because SEQ is a command rather than a program structure, it can be used more
readily with computed arguments, including the procedure. This also makes SEQ more

-252-

Programming 9.5

suitable for manual calculations. Also, SEQ automatically takes care of combining the
individual results into a list, so that you don't have to know in advance how many results
there will be. A FOR loop, on the other hand, is more flexible, and can be used for
iterations which produce results other than stack objects that are to be combined into a
list.

9.5.2 Indefinite Loops
An indefinite loop is a loop where the number of iterations is not determined in
advance. Instead, the loop repeats indefinitely until some exit condition is satisfied.
The HP 48 provides two program structures for indefinite looping, the DO loop and the
WHILE loop. The primary difference between the two structures is the relative order of
the test and the loop sequence. In a DO loop, the sequence is performed first, then the
test; in a WHILE loop, the test is performed first.

9.5.2.1 DO Loops
The basic form of a DO loop structure is:

DO loop-sequence UNTIL test-sequence END.

Loop-sequence is any program sequence. Test-sequence is a second program sequence,
which must end with a flag on the stack. END removes the flag; if the flag is false
(zero), execution jumps back to the start of loop-sequence. If the flag is true (non-zero),
execution proceeds with the remainder of the program after the END. You can read a
DO loop as:

"Do loop-sequence repeatedly, until test-sequence is true."

00 1
• Example. Compute L -, .

n=i n'

• Solution: The sequence below sums terms of the form n -5, until two consecutive
sums are equal. Executing the sequence returns 1.03692775496, after 184 iterations.

1 'N' STO
o
DO

DUP
N -5 ~ +
1 'N' STO+
SWAP

UNTIL
OVER

END

Initialize a variab Ie N as a counter.
Initialize the sum.
Start of loop.
Copy the old sum.
Add n -5.

Increment the counter.
New sum in level 2, old in level 1.
Start test-sequence.
True if old sum = new sum (leaves only new sum in level 1).
Repeat if test was fmC, otheJWise done.

-253-

9.5 Programming

The position of the UNTIL between DO and END is unimportant. That is, the division
of the program steps into loop-sequence and test-sequence is only a matter of program
legibility. Both loop-sequence and test-sequence are executed at each iteration of the
loop, so it doesn't matter where you put the UNTIL. We recommend that you use the
UNTIL to isolate that portion of the program that constitutes the logical test--the pro­
gram steps which produce the flag that determines whether or not to repeat. The por­
tion that precedes the UNTIL should be the part of the loop that computes the results
used by the remainder of the program after the END.

To reverse the sense of the test, that is, to make a loop that repeats until a test is false,
you can either substitute an opposite test command (> for <, FC? for FS?, etc.), or
insert a NOT immediately before the END:

DO loop-sequence UNTIL test-sequence NOT END.

In the example above, we used a global variable N to hold the summation index. It is
not uncommon to have an indefinite loop that uses an index or a counter similar to that
used in definite loops. For simple incrementing by one, you may find it convenient to
usc INCR, which takes a global or local name as an argument and executes the
equivalent of DUP 1 STO + RCL, using fast "in-place" arithmetic. DECR serves a simi­
lar purpose when you want to decrement by one. These commands perform a final RCL
expressly so that the index value is available for testing for a loop exit condition. For
example, the following sequence is equivalent to a FOR ... NEXT loop:

index stop
« DO

loop-sequence
UNTIL

'index' INCR stop

END
»

Initialize the index and save the stop value.

Iterate until the incremented index is equal
to the stop value.

Here we have used local variables to hold the index and stop values. The point of the
example is not to suggest replacing FOR ... NEXT loops, but to show how you might
write a loop that combines features of indefinite loops and definite loops. Such a loop
can use INCR or DECR to maintain an index, while using a more elaborate exit condi­
tion than is convenient with FOR ... NEXT loops.

-254-

Programming 9.5

9.5.2.2 WHILE Loops
In a WHILE loop, a test sequence is defined in the first part of the structure:

WHILE test-sequence REPEAT loop-sequence END.

Here again loop-sequence is any program sequence, and test-sequence is any sequence
that returns a flag. REPEAT removes the flag; if the flag is tme, the program executes
loop-sequence, then loops back to test. If the flag is false, loop-sequence is skipped, and
execution proceeds with the remainder of the program after the END. You can read a
WHILE loop like this:

"As long as test-sequence is tme, keep repeating loop-sequence."

• Example. The program GCD finds the greatest common divisor (GeD) of two
integers m and n. GCD repeatedly computes r = m modn; if each successive r is non­
zero, it replaces n with r, m with n, and repeats. When r is finally zero, the value of n is
the GeD.

GCD Greatest Commoll Divisor E895

/C\'CI 2 /C\'Cl I I /C\'ei I

m 11 L" GCD(m,ll)

« WHILE Beginning of test-sequence.

DUP2 Make 2 copies of m and 11.

MOD Compute r = m modll

DUP 0 * Test r*O.

REPEAT If true, do the following:

ROT DROP Replace m and 11 by new values.

END Loop back and repeat the test-sequence.

ROT DROP2 Leave 11 in level I.

»

To reverse the sense of the test, that is, to make a loop that repeats while a test is false,
you can either substitute an opposite test (> for <, FC? for FS?, etc.), or insert a NOT
immediately before the REPEAT:

WHILE test-sequence NOT REPEAT loop-sequence END.

-255-

9.5 Programming

9.5.2.3 DO vs. WHILE
DO loops and WHILE loops are very similar in purpose, and often you can use either
form for a programming problem. Here is a summary of the differences between the
two structures:

• In a DO loop, the test for looping is made after the loop-sequence is executed. In a
WHILE loop, the test is made before the loop-sequence.

• In a DO loop, the loop-sequence is executed at least once, and again at every itera­
tion. In a WHILE loop, the loop-sequence may not be executed at all. In general,
the WHILE loop loop-sequence is executed one time fewer than the test-sequence.

• The position of UNTIL between DO and END is arbitrary, and has no effect on
results. The position of REPEAT between WHILE and END is significant.

9.6 Error Handling
An HP 48 error is a circumstance in which normal execution is stopped because the
HP 48 is unable to proceed without your intervention. Errors range from simple cascs,
such as DROP executed with an empty stack, to the extremc case where there is so little
free memory that thc HP 48 i~ unable even to display the stack contents. When an error
occurs, the HP 48 normally stops all currcnt execution, beeps, and displays an error mes­
sage. Usually, if the error occurs during execution of a command, the error display also
identifies the erring command.

Whether a particular circumstance is an error or not is a maller of design and conven­
tion. On most calculators, taking the square root of -1 is an error; the HP 411 is
designed instead to return a complex number result. The calculator could similarly
return some sort of default result in almost any situation. The Invalid Syntax error, for
example, could be eliminated by having ENTER return the command line as a string
when the object syntax in the command line is incorrect. That, however, would gen­
erally be more misleading and inconvenient than the immediate error signal that
requires you to fix a bad entry. This is the general philosophy behind all of the HP 48
error conditions--the calculator would rather stop and have you take action than to
proceed with a possibly inappropriate action of its own.

Most HP 48 capabilities are programmable, and error handling is no exception. By
using the IFERR structure, a program can intercept any or all errors (except Out of
Memory) and supply its own corrective action. The structure is also called an error trap,
since it "traps" an error before it can interrupt the overall program execution. The
IFERR structure has the following general form:

IFERR error-sequence THEN then-sequence ELSE nomlal-sequence END,

-256·

Programming 9.6

where the three sequences are arbitrary program sequences. You can read an IFERR
structure as;

"If any error occurs during the execution of error sequence, then execute then­
sequence and continue execution after the END. If no error occurs, skip then­
sequence and execute normal-sequence, and continue on after the END."

There docs not have to be a nonnal-sequence--the ELSE nonnal-sequence is optional.

IFERR error sequence THEN then-sequence END

executes then-sequence if an error occurs during error sequence, but does nothing special
otherwise .

• Example. Compute sin x/x, whcre x is a stack argument, using an IFERR structure to
handle the undefined result error condition at x = O.

DUP SIN SWAP IFERR / THEN DROP2 END

This sequence returns 1 for an argument of zero.

The position of the IF structure word in the sequence preceding THEN in an IF struc­
ture is unimportant heeause it is THEN that actually makes the branch decision. How­
ever, the position of IFERR in an IFERR structure is significant; the IFERR and the
succeeding THEN define the extent of the sequence for which errors are trapped.
IFERR A B THEN intercepts errors in A and B, whereas A IFERR B THEN traps errors
occurring only in B. The jump to the then-sequence happens immediately upon the
error; any remaining steps preceding the THEN are skipped. Thus if an error occurs in
A in the structure IFERR ABC THEN D END, Band C are not executed--execution
jumps from the point in A where the error occurred directly to D.

Because the reaction to an error is usually specific to a particular error, it is generally a
good idea to keep the error-sequence short, containing as few as one object if possible.
Then there is no ambiguity about which object caused the error, and no part of the
sequence that will be skipped. Of course, even a single object may cause different types
of errors. The best practice is to have the then-sequence of an IFERR structure deter­
mine which error actually triggered the error trap. For this purpose, you can use either
ERRN, which return the binary integer number of the most recent error, or ERRM,
which returns the error message string. If the error is an unexpected one, the then­
sequence can terminate the program by using DOERR (see also section 9.6.2) to repeat
the error. Then the error may either be intercepted by yet another error trap that sur­
rounds the current one, or it may terminate the program with an error message. For
example, suppose that a program adds two arguments. The addition can fail either

-257-

9,6 Programming

because the stack is empty, or because the arguments are of the wrong type. The fol­
lowing error trap handles the first problem, but merely passes on the second:

IFERR +
THEN ERRN

IF #201 h
THEN 0 +
ELSE ERRN DOERR

END
END

Get the error number.
Is it error 201 (Too Few Arguments)?
Then add zero.
If the arguments are the wrong type,
reissue the error.

The number returned by ERRN, expressed in hexadecimal, is a (up to) five-digit
number. The first three digits are the library number of the library containing the com­
mand that reported the most recent error. The last two digits are just the number of
the error message in the library's message table. Built-in libraries have single-digit
lihrary numbers; for example, the Too Few Arguments error illustrated in the preceding
example is the first error in library 2, which contains all of the error messages related to
gem:ric stack operations.

It is sometimes useful for a program to determine whether a particular error has
occurred, after any trapping of that error has taken place. It is not always sufficicnt just
to check the last error number using ERRN, since that value might have been esta­
blished prior to the execution of the error trap. To prevent this ambiguity, you can use
ERRO to reset the error number to zero prior to an error trap. ERRO also resets the
error message returned by ERRM to an empty string.

9.6.1 CANCEL
Pressing []lli] to execute CANCEL normally aborts current procedure execution and
returns the HP48 to manual operation (sec also section 4.2.3). CANCEL thus behaves
similarly to an error, except that there is no beep or message display. In all other
respects, you can treat []lli] as an ordinary error that has error number zero and a null
error message. In particular, you can trap []lli] with an IFERR structure. You might
do this in order for a program that is interrupted by []lli] to have a chance to "clean
up" before terminating execution, or to prevent termination entirely.

Examples of both of these uses of trapping CANCEL as an error are given in the pro­
gram ASN41 in section 7.2.1.1. In that program, the first error trap, around INPUT, lets
you abort the assignment, but it discards the three INPUT arguments before quitting.
The second error trap, around 0 WAIT, allows you to make an assignment to []lli] by

·258·

1
l'
I
I
,I

\

Programming 9.6

pressing it--without the trap, pressing [QRJ would abort the program. Notice that in
both cases, [QRJ is the only error possible, so the error trap does not need to check the
error number.

In order to intrude less on program error handling, [Q[] does not change the error
number and message returned by ERRN and ERRM when it is pressed during the execu­
tion of non-programmable operations such as the EquationWriter, the interactive stack
(section 5.5) or any of the catalogs.

9.6.2 Custom Errors
An error trap lets you prevent an ordinary error from interrupting program execution.
However, the reverse situation may also arise: you would like a program to abort execu­
tion and report an error even though nothing has occurred that the calculator recognizes
as an error. This also includes cases where an error trap has intercepted an error then
decides to go ahead and report the error anyway. These purposes are accomplished hy
DOERR (DO ERRor).

You can create a C/lslom error by executing DOERR with a string argument. "Messaxe"
DOERR generates an error condition just like a command error:

• Procedure execution ahorts, and the calculator heeps.

• The text of "mcssaxc" is displayed in line 1 of the display. You can also create a
two-line message by including a newline character (10) in the message. Each line
should he 22 characters or fewer to fit on the display. The program FRACALC in
section 7.4.1 has an example of the use of a custom error message.

• Subsequent execution of ERRN and ERRM return #70000h and "messaxc", respec­
tively. #70000h is a special error numher reserved for DOERR.

• You can trap DOERR like any other error.

DOERR will reproduce an ordinary error condition whw it is used with a numerical
argument. The number, which may be either a real number or a binary integer, should
be the error number of a built-in or library error (DOERR docs not display any com­
mand name along with Error:). If there is no message corresponding to the number, the
display will show Error: with no additional text. 0 DOERR is a programmable
equivalent of CANCEL; execution causes a program to abort with no beep or error mes­
sage.

You may observe that the errors listed in the HP 48 owner's manuals are not always
numbered consecutively. There are, for example, apparently no errors between 106h
and 123h. However, if you execute #107h DOERR, the HP48 will beep and display

-259-

9.6 Programming

Error: Real Number. The explanation is that all of the text used in HP 48 displays is
entered in the various libraries' message tables, along with the error messages. Mes­
sages 106h-122h happen to be the object type text that the HP 48 uses to display the
stack contents in low memory situations. DOERR does not attempt to distinguish which
messages correspond to normal errors. The program MSGSHOW in section 12.6.4.4
lets you review all HP 48 messages.

9.6.3 Error Handling and Argument Recovery
The design of an error trap must take into account whether last arguments recovery
(section 5.3) is active at the time an error occurs. If argument recovery is enabled, the
arguments of the command that errors are restored to the stack. If recovery is disabled,
the arguments are discarded. This difference obviously can have an effect on error
traps, which may need to take into account the contents of the stack after an error. The
sin x Ix example at the beginning of section 9.6 assumes that argument recovery is
enabled. The DROP2 in the then-sequence is intended to discard the two zeros that
cause the division error, and which are restored by the error system. If recovery is dis­
abled, the DROP2 is inappropriate hecause the two zeros are not returned after the
error.

A well-designed program, including its error traps, should work correctly regardless of
whether argument recovery is enabled or disahled. There are two general approaches:

1. Set or clear flag - 55 in the program hefore an error trap, then write the IFERR
structure accordingly. Returning to the sinx Ix example, either

-55 CF DUP SIN SWAP IFERR / THEN DROP2 END

or

-55 SF DUP SIN SWAP IFERR / THEN END

will work. This method has the disadvantage that it may alter the state of flag
- 55 and thus affect other programs that may depend on the flag. As a rule, any
program that docs depend on flag - 55 or any other flag should itself set the flag
the way it wants, so this should not be a major limitation.

2. Include a conditional in the then-sequence that can react to the current state of
flag - 55 without altering it. For example,

-260-

Programming

9.6.4 Exceptions

DUP SIN
IFERR /
THEN

IF -55
THEN
END
1

END

9.6

SWAP

Fe?
DROP2

A mathematical exception is an error condition encountered in the execution of certain
functions, for which the HP 48 has a built-in error trap that lets you control how the
condition is handled. You can treat an exception as an execution-halting error, or have
the calculator supply a default result and continue normally. You make your choice by
means of the three exception action flags (- 20, - 21, and - 22).

A typical exception is division by zero. The behavior of / when the divisor is zero is
controlled by flag - 22, the infinite result action flag. If flag - 22 is clear (the default),
division by zero is treated as an error, causing the Infinite Result error. However, if flag
- 22 is set, no error is reported, and one of the values ± 9. 99999999999E499 (± MAXR)
is returned, which are the HP 48's best representations of ± 00. The sign of the result is
determined by the sign of the dividend.

The choice to error or to supply a default generally depends on whether you expect the
exceptional condition to occur. For example, if you don't anticipate that a program
might cause a division by zero, it is better to clear flag - 22 so that the program will halt
and report the error. On the other hand, if you know that the divide-by-zero situation
can happen, and that ± MAXR is a good approximate result that lets a calculation
proceed to meaningful results, then setting flag - 22 is a good choice.

When an action flag is used to prevent the execution halt that would otherwise follow an
error, a program can still detect when an exception has occurred. When an exception
occurs that is not an error, one of the signal [lags - 23 through - 26 is set automatically.
For example, if flag - 22 is set, then flag - 26 is set whenever an infinite result exception
occurs. Therefore, a program can clear flag - 26, carry out a calculation with flag - 22
set, and determine afterwards whether a division by zero occurred, by testing flag - 26.

In addition to the infinite result exception, the HP 48 also recognizes two other excep­
tions:

-261-

9.6 Programming

• Oveiflow (action flag -21, signal flag -25). Overflow occurs when a function
returns a result that is finite, but larger than the HP 48 can represent, such as 2000!.
With flag - 21 clear (the default setting), overflowing functions return
±9.99999999999E499. Setting flag -21 causes an overflow to return an error. An
overflow is not the same as an infinite result, for which the correct value is ±oc
rather than a too-large finite number.

• Undeiflow (action flag -20, signal flags -23 and -24). Underflow occurs when a
function returns a result that is not zero but is smaller in absolute value than
1 E - 499 (MI NR), the smallest non-zero number that the HP 48 can represent. If
flag - 20 is clear (the default setting), any underflowing function returns zero as its
default result. Since zero has no sign, two signal flags are used: flag - 23 is set to
indicate that the function underflowed from the negative side of zero; flag - 24 is set
to indicate underflow to a small positive number.

Notice that the sense of the underflow and overflow flags is reversed from that of the
infinite result flag. That is, you set flag - 22 to prevent an error, whereas you clear flag
- 20 or - 21. HP 4/\ mode flags are clear in the default state, and the defaults are that
an infinite result is an error hut overflow and underflow are not.

0-0-0 is /lot an exception. That quantity is mathematically undefined--it is neither an
overflow nor an infinite result. There is no appropriate default result to supply, so the
HP 4/\ always reports the Undefined Result error and halts execution. You can, of
course, create your own exception handing hy using an IFERR structure to trap this
error.

9.7 Local Variables
The variables that you see cataloged in the VAR menu are called global variables
because they are accessible from any procedure, and remain in memory until you specif­
ically remove them. However, the HP 48 also provides local variables that are associ­
ated only with individual procedures. The use of these variables and the corresponding
local name objects is a very useful and powerful programming technique.

It is possible, with the "unlimited" stack provided by the HP 48, to carry out an arbi­
trarily complicated calculation on the stack without any use of variables to store inputs,
intermediate results, or final outputs. The fastest and most efficient computation is usu­
ally achieved in this manner.

A language like BASIC, which has no stack at all, requires that all input, output, and
intermediate results must be stored in variables. This makes individual BASIC state­
ments easy to read, but not particularly efficient. Nevertheless, the popularity of BASIC
suggests that it is not always program execution efficiency that is paramount, but rather

·262-

Programming 9.7

the overall "throughput" of the problem solving process. If a calculator is easy to pro­
gram, you can usually get a result in less total time even if the program itself may exe­
cute more slowly than if you developed a solution in an efficient but arcane language.
Thus while you can write a HP 48 program that is a marvel of structure and efficiency
by using only stack objects, the time and skill required for you to keep track of every­
thing on the stack during program development may be too high a price for the result.
In short, there is often a compelling advantage to assigning names to objects to simplify
the programming process.

At first glance this seems to imply the use of global variables, which are always accessi­
ble and appear automatically in the VAR menu. However, while global variables are fine
for "permanent" data and procedures, they arc not as attractive for storing temporary
valucs. They stay around indefinitely, so that you have to rcmember to purge them to
avoid cluttering up the VAR menu and to conservc memory. Furthermorc, you have to
be careful when you creatc a variable in one program to avoid using the samc name as
that used by another program, unless you deliberately intend the two programs to share
a common variable.

HP 48 local variables provide a means for saving program inputs, intermediate data and
results, and even subroutines, that is intermediate between using the stack exclusively
and using global variables. Local variables exist in local memories, which are portions of
RAM temporarily allocated for the local variables. A local memory is accessible only
within a context defined by the program structure that creates it. This means that there
cannot be any name conflicts with global variables or other procedures' local variables.
Also, when the defining structure has completed its execution, its local memory with all
of its local variables is automatically deleted.

There are two methods by which you can create local variables. The primary method is
by means of local variable sln/clures, which usc the program structure word - to create
local variables. In addition, the FOR ... NEXT jSTEP loops described in section 9.5.1 use
local variables to store the current values of their loop indices. Although the index vari­
able is used for this special purpose, it is otherwise the same as a local variable created
by -, with the same applicable commands and restrictions. In the remainder of this sec­
tion, we will concentrate on local variable structures.

A local variable stn/cture starts with the structure word - (called "arrow," "bind," or just
"to") followed by one or more local names, and then by a program or an algebraic
object referred to as the defining procedure. The closing delimiter (' or ») that ends
the defining procedure also marks the end of the structure:

- name 1 name 2 namen «program», or

-263-

Programming 9.7

the input number will be on the stack at each iteration, and what stack operations are
required to return a copy of the number. You can avoid the mental gymnastics by writ­
ing the program to remove the number from the stack at the outset, and name it with a
local name:

« X

« X 2 5
FOR n

»
»

x n
NEXT

Store the number as x.
Powers 1 through 5.
Loop with index n.

Compute xn.
Repeat.

The latter program is slightly longer than the previous version, but the time it takes you
to write it should be less because there is no effort required to keep track of the input
number on the stack. Any time the program needs the number, it just executes the
local name. The lesson of this simple example becomes more important as the com­
plexity of the programmed calculation increases, to the point where using local variables
can make the difference between success and failure in the development of a program.

You can usc local variable structures at any point in a program, not just at the begin­
ning as in the case of user-defined functions. The program CINT illustrates the usc of a
local variable to name an intennediate result. CINT computes the radius of a circle
inscribed in a triangle, where the lengths of the sides of the triangle arc specified on the
stack. The formula is:

r
Is (s-a)(s-b)(s-c)t'

s

where a, b, and c are the lengths of the sides, and s

CINT Circle in a Triangle 3EBE

level 3 level 2 levell I levell

a b c u- r

« ~ a b c Name the lengths of the sides.
« '(a+b+c)/2' EVAL ~ s Compute and save s.

'V (s*(s-a) *(s-b) *(s-c))/s' Compute r.
» End of local variable structure.

»

-265-

9.7 Programming

There are numerous additional examples of the use of local variables in programs
throughout this book. In the remainder of this section, we will review some of the
idiosyncrasies of local names and variables, and local variable structures.

9.7.1 Comparison of Local and Global Variables and Names
Local names and variables are very similar to ordinary names and variables, but there
are some important differences:

• Global variables are "permanent," remaining in user memory until you explicitly
purge them. Local variables are stored in dynamically created local memories, which
are segments of memory associated with individual procedures. When a procedure
has finished evaluation, its local memory (if it has one) is deleted, including all of its
local variables.

• Local names are a different object type (7) from global names (6). This is how the
HP 48 system knows whether to find the variable corresponding to the name in VAR
memory (global variables) or in a temporary local memory. When the HP 48
attempts to find a local variable, it searches the most recently created local memory
first, then previous ones in reverse chronological order, until it finds a local variable
matching the specified name.

• Executing a local name recalls to level 1 the object stored in the corresponding local
variable, without executing the object. This means that when you store a program in
a local variable, to execute that program you must execute the variable name and
then the recalled program separately, usually with EVAL (or ~NUM). The EVAL is
not necessary for programs stored in global variables, since execution of a global
name automatically executes the stored object.

• ISOL, QUAD, and TAYLR, which are designed to work with Jomzal global variables
(names with no associated variables) do flat accept local names as arguments. Also,
the independent variable used for plotting (DRAW) and solving (ROOT) must be
specified with a global name.

• You can not delete a local variable with PURGE.

• Local names can be the same as HP 48 command names (except for single-character
algebraic operator names like +, -, *, etc.). Notice that you can have local names i
and e, but you should be careful not to use these names when you also want to use
the symbolic constants i and e.

Occasionally you may encounter a local name for which there is no associated local vari­
able. This is not a problem for global names, because of their role as formal variables
(section 3.6.1). However, executing a local name with no local variable is an error. For
example, a defining procedure may leave the name of a local variable on the stack after

-266-

Programming 9.7

it completes evaluation:

« ~ X « 'x' » »

This leaves the local name 'x' on the stack after evaluation, but the corresponding local
variable x that was given the value 1 is gone. You can not successfully execute this "for­
mal local variable"--EVAL returns the Undefined Local Name error. The same error
arises when you enter an unquoted name starting with "-", which is automatically
entered as a local name.

9.8 Local Name Resolution
The general topic of name resolution was discussed in section 6.5. However, there are a
few details that are worth adding now in light of the more extensive treatment of local
names in the preceding sections. When ENTER processes a name in the command line,
it normally interprets the name as a global name unless it starts with "-". However, no
matter what the name, if it follows a FOR or an ~, then ENTER treats it as a local name
while it is handling the rest of the structure that follows. After the subsequent », " or
NEXT that terminates the structure, further instances of the same name arc again inter­
preted as global names. Thus in

« ~ X « X » X » ,

the X in the inner program «< X ») is a local name, but the final X is a J;lobal name.
To help you keep track of which names are which type, we recommend that you adopt a
naming convention, such as using lower-case letters for local names, and upper-case
letters for global names. The above program then looks like this:

« ~ X « X » X » ,

making it clear that the global X is not to be confused with the two local x's. We will
follow this convention in this book, except in certain examples in this section where we
arc illustrating possible confusions between global and local names.

The resolution of names as global or local can be complicated when you nest local vari­
able structures. "Inner" structures can access the local variables of the "outer" struc­
tures that contain them, but not vice-versa. For example,

~ x « 2 ~ Y « X y + » X + Y + »

returns' 4 + y' (not 6), as follows:

·267·

9.8

X

«
2 -
«

X

»
X +
Y +

»

Y

y +

Store 1 in local variable x.
Start of program in which X is recognized.
Store 2 in local variable y.
Start of program in which y is recognized.

Programming

Add X from "outer" program to y from "inner"
program, returning 3.
End of inner program where y is recognized.
Add X to 3, returning 4
This y is not a local name, because it is outside of
the program where y is local. It therefore names
a global variable, which we are here assuming to
have no current value. The sum is therefore
'4+y'.
End of outcr program where X is a local variable.

If you rewrite the above sequence as

X « 2 ~ Y « X Y + X + Y + » » ,

moving the final y back inside the program where the local variable y is defined, the
sequence then returns the value 6.

When two nested local variable structures define local variables with the same name,
two separate local variables are created. Any use of the name refers to the most
recently created local variable. The fact that there is another local variable with the
same name in a previously created local memory docs not matter. Thus

- X « 2 ~ X « X » »

returns 2, whereas

- X « 2 - X « » X »

returns 1.

It is important to note that a procedure represented by a name (rather than the pro­
cedure itself) within a local variable structure can not access the local variables defined
by that structure, unless you specifically arrange for it to do so. For example, if you
create the program A:

« X Y + » ' A' STO,

-268-

1
I

Programming 9.8

and invoke it in another program like this:

« 2 ~ X Y « A » » ,

then executing the latter program returns 'x+y' (global X and V), not 3. When you
enter the program A, X and yare created as global names. The search for their values
when A is executed in the second program therefore is made in VAR memory, even
though there are identically named local variables at the time of the search.

This property of local variables, which makes it possible for each program to define its
own variables without name conflicts with those of other programs, has the disadvantage
that you can't always easily break a program containing a local variable structure into
smaller programs. For example, you can't rewrite

« ~ X Y « sequence I sequencez » »

as two programs

« sequence I » 'SEQ1 ' STO

« ~ X Y « SEQ1 sequence 2 » »,

if sequence I contains either of the names X or y. The best way to solve this problem is
to use names like -x and -y that are always entered as local names. But there arc
several other methods:

• Use global variables. Rewrite the second program as

« 'V' STO 'x' STO SEQ1 sequencez x y } PURGE »

This method is not very desirable, because STO for local variables and PURGE are
relatively slow operations .

• Use the stack to pass the values from one program to the other. Rewrite the pro­
grams as:

« X y« sequence 1 » » 'SEQ1 ' STO

« X Y « X y SEQ1 sequencez » »

The latter program puts the values of x and y back on the stack, where SEQ1 can
store them in its own local variables x and y. This approach requires no change to

-269-

9.8 Programming

sequence I.

• Force x and y in SEQ1 to be created as local variables. You can achieve this by
entering the SEQ1 program while there is an existing local memory containing local
variables x and y.

1. Type

o 0 ~ x y « HALT »IENTERI

You will see the suspended program annunciator turn on. Because the local
variable structure is executing when the program halts, the local memory con­
taining local variables x and y is still present.

2. Enter the program SEQ1:

« sequence I » 'SEQ1' STO.

All instances of x and y in sequence 1 are treated as local names.

3. Now, when you execute the main program

« ~ X Y « SEQ1 sequence 2 » »,

execution of the names x and y in SEQ1 returns the values stored at the start
of the main program.

This method, although it solves the problem with no rewriting, can be trouble­
some because if you later edit SEQ1, you must remember to create again the
halted program local memory. Otherwise, the command line reentry converts
x and y back into global names. Also, you won't be able to use SEQ1 as a
subroutine for other programs unless those programs also define local vari­
ables X and y.

4. Use names that start with "-", which arc always interpreted as local names.
In the current example, replace x and y with -x and -y everywhere in
sequence 1 and sequence 2.

9.8.1 Local Subroutines
When a program contains any sequence that is duplicated elsewhere in the program, it
is usually convenient and memory efficient to encapsulate the sequence as a subroutine
that can be executed by name in as many places as it is needed. If a subroutine can be
used by more than one program, then it is appropriate to store it as a global variable.
But if it is not of use outside of one program, then it is better to store it in a local vari­
able. This keeps the program as a single unit, reduces the clutter of the V AR menu,

-270·

1
J

1

I
I
j

I
I

Programming 9.8

and makes execution faster (section 6.5.2).

In cases where a sequence contains only commands and global names, it is straightfor­
ward to make it into a local subroutine: enclose it in program quotes and use ~ to save
it in a local variable:

« sequence» ~ sub «rest of program ...

sub can then be called any time within the rest of the program. (Remember that
because sub is a local name, executing it only puts the subroutine on the stack. The
correct calling sequence is sub EVAL.)

The program MOVE in section 6.1.7 shows an example of ordinary local subroutine use.
Lines 2-6 of MOVE define a program object that is stored in the local variable s in line
7. The object is then executed (s EVAL) in lines 8 and 16.

FIND (section 6.1.4) provides an example of a subroutine (lines 1-14) that contains local
names, including its own as it calls itself recursively (section 12.10). In this case, the
first occurrences of the local names as the program is entered precedes the local vari­
able structure where the corresponding variables are created. Normally, this would
mean that the names within the subroutine would be entered as global names. This
problem is avoided in FIND by using the names ~name andcJodir, which are always
entered as local names because of their leading ~ characters.

9.8.2 Resolution Speed
Because typical procedures use relatively few local variables compared to the number of
global variables that might be in the current path, local name resolution is often signifi­
cantly faster than that of global names. This speed difference can be important when
you have, for example, a program loop that executes at each iteration a global name
that resolves to a global variable in the home directory, which might be several levels
above the current directory. In such cases, you may find you can improve the program's
performance by having it recall the object in the global variable at the outset, and stor­
ing it in a local variable. Then all uses of the global name within the program should be
replaced by the local name (with EVAL if needed).

Local variables are also preferable to global variables for temporary result storage for
performance reasons as well as because of their automatic deletion. When you store an
object in a global variable, room must be made for the variable in user memory by mov­
ing some or all of the current variables. The time it takes for this is roughly propor­
tional to the total memory size of existing global variables, which can be as much as a
second or more when user memory exceeds 100 Kbytes. By contrast, storing an object
in a local variable takes on the order of .01 seconds.

-271-

10. Display Operations and Graphics

In mechanical terms, the HP48 display is a liquid-crystal display (LCD), contammg a
matrix of square picture elements, or pixe/s. The pixels are arranged in 131 horizontal
rows and 64 vertical columns. The individual pixels can be in two states, which we will
call light and dark, or off and on. A blank display has all pixels off; turning various pix­
els on forms characters and other patterns that make up the information content of the
display.

The logical capability of the HP 48 display goes well beyond its simple mechanical
description. The HP 48 has the ability to deal with display information up to 2048 pixels
wide, and indefinitely high, so that the pictures you can create on the HP 48 are not lim­
ited to the ordinary LCD dimensions. You can observe this capability when you use the
EquationWriter; if a formula display becomes too large for the LCD, you can use the
cursor keys to scroll the picture around in the display. Since the picture moves to the
left when you press the right cursor arrow, the appropriate model you can visualize is
that the physical display is a "window" through which you can view the picture. Press­
ing a cursor key moves the window in the indicated direction.

Since the logical size of the HP 48 display is not fixed, the calculator does not have
memory specifically dedicated to the display. Rather, display memory is allocated from
ordinary RAM, sharing that mcmory with the stacks, user memory, and all of the other
memory-consuming HP 48 systems. The maximum size of the pictures you can display
thus depends on the amount of current free memory, at (roughly) 1 bit of memory per
display pixel. By picture we mean the visual image represented by a pattern of pixels, as
distinguished from the actual pixels or display.

Furthermore, the HP 48 actually defines three separate memory regions for display pur­
poses. We will call these regions screens, deriving from their roles as media upon which
you can show various pictures. The screens are:

• The menu screen, which is permanently allocated memory for the menu labels, 131
pixels wide by 7 pixels high.

• The text screen is an expandable memory region a minimum of 131 X 57 pixels in size.
The text screen is not limited to the display of text, but it is most commonly used for
displaying the stack and status information, in its minimum size configuration. How­
ever, the text screen is also used by the EquationWriter, for which it expands as
needed to accommodate the EquationWriter pictures. When you exit from the
EquationWriter, the text screen automatically collapses back to its default size.

• The picture screen is used by the plotting system and for program graphics. It does
not exist until needed by any plotting operation, when it is created if necessary with

-273-

10.0 Display Operations And Graphics

a size of 131 X 64 or larger. If you check free memory with MEM before and after
viewing the picture screen for the first time, you will find that free memory has
decreased by over 1000 bytes; that is the memory assigned for the picture screen.
Be aware that the picture screen is deleted by a system halt (section 6.6); you may
want to save its contents in a variable before doing anything that requires a system
halt, such as storing a library in a port or inserting or removing a memory card.

In addition to the three dedicated display screens, the HP 48 also provides for storing
and manipulating an indefinite number of pictures as graphics objects (section 3.4.7).
The three screens are actually specially stored graphics objects. The HP 48 has a
number of operations for creating graphics objects and displaying them on its screens.
In the remainder of this chapter we will study the programmable commands that are
available for prompting and presenting graphical and textual information.

10.1 Controlling the Display
Ordinarily, after completing any current and pending operations, the HP 48 reverts to its
standard di~play, which consists of the simultaneous display of the text screen and the
menu screen. Here the text screen is divided into two regions: the status area at the
top, and the stack area that is shared by the stack display and the command line. Fre­
quently, however, you can see the standard display superseded temporarily or indefin­
itely by some form of special display. Such displays range from the use of the status
area to show error messages, which persist only until the next key press, to an
environment-specific display (such as showing the picture screen or an input form),
which takes over the full display until you deliberately exit from the environment.
Environments may also have their own menus. This ability to supplant the standard
display is available to programs by means of the various display commands.

The most frequent manual display change is switching between the text screen and the
picture screen. To activate the picture screen from the standard display, you execute
PICTURE, usually by pressing [g] when no command line is present (~IPICTUREI will
enter PICTURE into the command line). This displays the picture screen with the menu
screen superimposed upon it (with the plot environment menu). You can switch the
menu screen on and off by pressing [±] and L.J ; or by pressing ~ IPICTUREI , which
also allows you to scroll the display window around on the picture screen if it is larger
than 131 X 64. To return to the standard display, press I ON I .

[The keyboard label GRAPH on the HP48S/SX was changed to PICTURE on the
HP 48S/SX, to reflect the fact that the picture screen can show more than just
mathematical graphs. The command GRAPH was therefore renamed PICTURE; how­
ever, the HP 48G/GX will accept GRAPH as an alternate command line name for

-274-

J
1
l
'l
:{

I ,
1

I
I

I
i
I

Display Operations And Graphics 10.1

PICTURE, and if a HP48GjGX program is transferred to an HP48SjSX, PICTURE will
appear as GRAPH.]

Executing PICTURE in a program activates the plot environment while suspending
further program execution. When you next press [Q[] , the text screen is redisplayed
(the plot menu remains in the menu screen) and the program resumes execution. If you
returned any data from the picture screen to the stack, such as coordinates, graphic
objects, or solved results from the ~FCN~ menu, that data is then available for the
program's use as it resumes execution.

You may also wish to make the picture screen visible while a program is running, but
without activating the plot environment. This is accomplished with PVIEW (Plot VIEW).
PVIEW requires an argument that specifies the position of the screen relative to the
display; in particular, you must enter the coordinates of the pixel in the picture screen
that you want displayed in the upper left corner of the display. The coordinates may be
expressed as a list of two binary integers { #m #n }, or as a complex number (x,y) that
specifies a point in logical coordinates (section 10.3.5). PVIEW allows you to watch the
picture screen while you change it, to help you monitor the progress of an ongoing plot,
or to present any kind of varying graphics display (see, for example, the program
GSAMP listed in section 10.3.1). The picture screen remains visible until the program
ends, or until you execute TEXT. This command returns the text and menu screens to
the display. Note, however, that TEXT does not try to display the current stack
contents--it merely redisplays whatever was on the text screen at the point when PVIEW
was executed.

As one more alternative, you can execute PVIEW with an empty list as its argument. In
that case, PVIEW is equivalent to executing PICTURE followed by pressing @:iJ IPICTUREI
immediately. Program execution is suspended, and the picture screen is displayed
without the plot menu or the cursor--the cursor keys scrolI the entire window. {}
PVIEW is useful when you want to display a picture that is larger than the display, but
you don't need any of the interactive plotting facilities. Again, when you press I ON I to
exit from the picture screen display, program execution resumes normaIly.

10.1.1 Postponing the Standard Display
While a program is running, it can use display commands to show special text or pic­
tures. However, once the program finishes, the standard display takes over unless the
program specificalIy prevents it. For example, if you execute

"Hi There!" DISP

-275-

10.1 Display Operations And Graphics

you will see "Hi There!" flashed momentarily in the top line of the display and then
replaced by the standard status display. To keep a special display like this visible after a
program stops, you must use an additional command, appropriately named FREEZE:

"Hi There!" 1 DISP FREEZE u·

Hi There!
t HUMt .t

(The ~-LCD~ and -CLLCD= menu keys have an automatic display freeze built into their
definitions, but the programmable commands do not.)

For the purposes of FREEZE, the three nominal areas of the HP 4ii standard display are
numbered with powers of two: 1 for the status area, 2 for the stack area, and 4 for the
menu labels. To freeze one display area, execute FREEZE with a real number argument
equal to the desired display area number, e.g. 2 FREEZE preserves the stack area
display while the status and menu areas are updated. To freeze more than one area,
FREEZE's argument is the sum of the display area numbers (hence the use of powers of
two): 3 FREEZE freezes the status and stack areas; 5 FREEZE affects the status and
menu areas; and so forth, up to 7 FREEZE, which freezes the entire display.

10.2 Text Displays
One of the most common program display tasks is to show one or more lines of text.
This is accomplished by means of DISP, whieh displays text in the medium font in any
of the top seven display lines. Here's a simple example:

-276-

1
I

I
I
I
I

Display Operations And Graphics

I CHARDISP Display HP 48 enaraelers 0423

« CLLCD

o 11

FOR i

»

o 21

FOR j

'22*i+j' -NUM

CHR + DUP

'(i MOD 7) + l' -NUM DISP

NEXT DROP

NEXT

Clear the status and stack areas.

Need a total of 12 lines.

Initialize each text line.

22 characters per line.

Next character number.

Add the character to the line string.

Display in the current line.

There are several things to notice in this program:

10.2

• CHARDISP starts with CLLCD. This command blanks the status and stack areas.
You might omit this command from the program if you want to see how DISP
overwrites the existing (standard) display.

• DISP takes two arguments: a string from level 2 and a real number from levell,
where the latter can be from 1 to 7 (hence the (i MOD 7) + 1) to indicate the desired
display line. In the medium font, the display has eight lines; DISP can display in any
of the top seven but will not overwrite the menu labels in line 8.

• DISP displays an entire line at once, starting at the edge; you can not use it to
display part of a line. If the string argument is shorter than 22 characters, the
remainder of the display line is blanked.

• When CHARDISP starts, you sec 10 " • " characters displayed in line 1, then the
next characters appear in line 2. This is because character 10 is the newline charac­
ter. You can use DISP to display multi-line messages by including one or more new­
lines in the display string. The displayed text will start on the line specified by
DISP's number argument, and jump to the next line below after each newline char­
acter in the string argument. Without newlines, only the first 21 characters of strings
longer than 22 characters can be displayed, with ellipses " ... " in the rightmost charac­
ter position to indicate missing characters.

• CHARDISP does not include FREEZE, so the character display disappears as soon as
the program is finished.

The string manipulation commands described in section 3.4.3 are the basic tools for
creating text displays. For example, a very common task is creating a display string
from an object and text that labels the object. The program OLABEL below illustrates
this process. OLABEL displays an object (taken from level 2) by converting the object

·277-

10.2 Display Operations And Graphics

into a string, and appending it (with an "=") to a string provided in level 1. If the label
plus object does not fit in a single line, then the label and object are displayed on
separate lines. A copy of the object is left in level 1.

OLABEL OWpUI Labeling Utility E3C1

level 2 level I I lel'ell

object "label" lU" object

« " = " + Append" = .• to the label.

OVER DUP2 + Append the object string to the label string.

IF DUP SIZE 22 > If the string is too long,

THEN DROP SWAP

10 CHR + SWAP + then insert a newline.

ELSE 3 ROLLD DROP2 Otherwise. discard the extra copies.

END

CLLCD 1 DISP Clear the LCD and display the string.

»

You may want to include FREEZE at the end of OLABEL to preserve the ohject display.

10.3 Graphics Displays
To go beyond simple, line/character-oriented text displays, or to use the small and large
character fonts, you must create graphics displays. Here the key element is the graphics
object, or grob, which is the building block of graphics displays, analogous to string
ohjccts for character displays. The HP 4X's text and picture screens arc the viewing
mechanisms for graphics ohjects. For simple prompt and information displays, you will
most likely use the text screen, so that normal calculator keyboard operations are avail­
able. Also, using the text screen for temporary graphics displays does not disturh a plot
or other picture currently on the picture screen.

The primary tool for viewing graphics on the text screen is the command -LCD. -LCD
stores a grob into the top 56 pixel rows of the text screen, with the upper left corner of
the grob in the upper left corner of the screen. If the grob is smaller in either dimen­
sion than 131 X 56, the remainder of the screen (other than the menu area, which is not
affected by -LCD) is blank. If it is larger than 131 X 56, only the upper left 131 X 56 por­
tion of the grob is used. Several examples of using -LCD are given in the next section.

The counterpart of -LCD is LCD-, which returns the current combined text and menu
screen picture as a 131 X 64 graphics object. Notice that the LCD- grob includes the
menu labels, even though -LCD does not overwrite the menu label display area.

-278-

T
·1

I
I
I

Display Operations And Graphics 10.3

However, you can use SUB to extract the menu label picture from the LCD- grob for
other purposes, and you can view the entire grob by displaying it on the picture screen.

10.3.1 Graphics Object Operations
Graphics objects are the object representations of display pictures. They are character­
ized by their dimensions width X height, measured in pixels, and by the pixel data that
they contain. An individual pixel or position within a grob is specified by coordinates
expressed as a list of two binary integers: { #n #m }, where n is the column number,
counting right from column 0 at the left edge; and m is the row number, counting down
from row 0 at the top edge. These binary integers are interpreted as 20-bit signed
integers, so that only the least-significant 20 bits are used, and a number #n greater
than #80000h represents a negative number with absolute value #100000h - #n.
(Negative coordinates may be used with line, hox, and arc drawing--see section 10.3.6.1).

HP 4/\ commands that apply to graphics objects are found in the IPRGI -GROB- menu
plus SIZE, + and NEG. To illustrate the use of these commands, it is helpful to make
two sample graphics objects, which is accomplished by the program GSAMP. The pro­
gram stores a grob containing a filled circle in the variable SPOT, and another with a
filled square in GBOX.

I GSAMP (;raphics Samples A694 I

« 'PPAR' PURGE

»

ERASE {#O #O} PVIEW

-3 1

FOR x

'(x,V(4-SQ(x+ 1)))'

-NUM DUP CONJ LINE

.1

STEP

Initialize and view the picture screen.

Draw a filled circle as a series of lines:

PICT {#O, #3} {#131d #56d} SUB Store the picture in SPOT.

'SPOT' STO

ERASE

-1 3

FOR x
'(x,2)' -NUM DUP CONJ LINE

.1

STEP

PICT {#O, #3} {#131d #56d} SUB

Now draw a filled box:

'GBOX' STO Store this picture in GBOX.

-279-

10.3 Display Operations And Graphics

After executing GSAMP, you can tryout the various graphics commands, starting by
looking at the grobs made by GSAMP. SPOT §-LCD§ yields this picture:

And GBOX §-LCD§ shows the other picture:

Here if you execute ~LCD by means of its menu key, the grob display remains visible
until the next keystroke.

• SIZE returns the dimensions of a graphics object as two binary integers, with the width
in level 2 and the height in level 1:

SPOT SIZE L1 #131d #56d.

• BLANK creates new blank grobs, taking as arguments two binary integers that specify
in pixels the width (level 2) and height. #20d #30d BLANK makes a grob 20 pixels
wide by 30 pixels high.

• NEG inverts all of a grab's pixels, turning dark into light and vice versa. For example,
SPOT NEG §-LCD§ shows:

-280-

Display Operations And Graphics 10.3

• + "adds" two grobs together. Specifically, + combines two grobs of the same dimen­
sions into a new grob also of that size, where the result has all pixels turned on that
were turned on in either of the original grobs. In effect, one picture is superposed on
the other. Thus SPOT GBOX + ':"-LCD':" yields:

• GOR (Graphics OR) is a generalized form of + for graphics objects, for which the two
argument grobs do not have to be the same size. Its name derives from logical OR,
which returns tme if either of two arguments are tme, and false otherwise. GOR works
as follows:

grab I {#m #n} grab 2 GOR U" grab 3

where grab 2 is superposed onto grab I, with the upper-left corner of grab 2 positioned at
the { #m #n } pixel in grab I (you can also use a complex number to represent the pixel
position--see section 10.3.5). The result grab 3 is the same size as grab 1; any portions of
grab 2 that do not fit within the dimensions of grab I are clipped off. Example:

SPOT {#10d #10d} #8 #8 BLANK NEG GOR ':"-LCD':" U"

-281-

10.3 Display Operations And Graphics

•

• GXOR (Graphics eXclusive OR) is modeled upon logical XOR, which returns fmc if
either of two arguments is fmc, and false if both are fme or both are false. For graphics
objects, the result picture is a superposition of the argument grobs, except that it will be
light where dark regions from both arguments overlap. GXOR's argument order is the
same as GOR's; for example,

SPOT {#O #o} GBOX GXOR ~-lCD~ U"

An important use of GXOR is for placing temporary visible marks (such as a cursor) on
a picture that you can easily remove later. That is,

grab 1 {#m #n} grab 2 GXOR

puts a mark represented by grab 2 on grab 1; then with the result still on the stack,

{#m #n} grab 2 GXOR

removes the mark and restores grab 1. You can observe the action of GXOR byexecut­
ing the following program:

·282-

Display Operations And Graphics

I AGXOR Animate with GXOR OD7A

« SPOT PICT STO

Ah # Ah BLANK NEG - s

« {# Oh # Oh} PVIEW

o 130

FOR x

PICT x R-B #14h 2 -LIST

s 3 DUPN GXOR GXOR

NEXT

Store the spot on the picture screen.

Make a black square.

View the picture screen.

For each .t position:

Turn the square on and off.

10.3

• REPL provides a third method of combining two graphics objects, using the same
arguments as GOR and GXOR. In this case a region in grab 1 starting from { #m #n } is
replaced hy f!!ab 2. Thus

SPOT {#55d #29d} GBOX REPL ~-LCD~ 0';-

• SUB is a counterpart of REPL that allows you to extract a portion of a graphics object
as a separate, smaller grob. SUB is useful when you want to trim a grob to a smaller
size, or to use part of a grob for building other pictures. SUB takes a grob from level
three, and two coordinate lists that specify the pixel positions of the corners of the
region to be extracted:

SPOT {#35d #9d} {#75d #49d} SUB

-283-

10.3 Display Operations And Graphics

creates a 41 X 41 grob that contains the black spot from the SPOT grob.

10.3.2 Graphical Text
A very useful command for the development of graphical displays is the object-to-grob
conversion command ~GROB. Not only does this command simplify converting objects
to graphical text, but it gives you access to all three display fonts, plus the Equation­
Writer display.

~GROB requires two arguments: from level 2, the object to be imaged, and from level
one a real integer from 0 to 3 to specify the display font. For fonts 1, 2, and 3, the
object picture is a one-line text string like that obtained in a single line stack display,
respecting the real number and binary integer display modes, and the coordinate mode
for complex numbers and vectors. Unlike a stack display, however, the ~GROB result is
not truncated at the display width--this is because the grob may be intended for display
on the picture screen, which can be up to 2048 pixels wide.

Font numbers 1, 2, and 3 represent the small (variable width x 6 pixels), medium
(6 X 8), and large (6 X 10) character fonts, respectively. (The width of a character cell
given here includes the blank column at the right edge of a character that separates suc­
cessive characters). Font 0 is intended for algebraic and unit objects, for which
-GROB's results are the EquationWriter pictures of the objects (for other object types,
font 0 is the same as font 3). Since the EquationWritcr uses the active display to build
its picture, you will see the EquationWriter "in action" during 0 ~GROB execution, and
the display is blanked afterwards. Also, the grob returned is always at least l3l X 64, so
you may wish to trim the grob to a smaller size by using SUB.

A nice example of the use of ~GROB is provided by the program MINISTK listed below.
This program is handy when you want to view more than four stack levels simultane­
ously. It uses the small font (1) to display up to nine stack objects in single line format.
If you store « DROP MINISTK » in the global variable [3ENTER, and set flags -62
and - 63, then the HP 48 will use MI NISTK in lieu of the normal stack display after
every ENTER (see section 7.4).

10.3.3 Displays on the Picture Screen
The text screen is adequate for many graphical display purposes. However, you must
use the picture screen in the following circumstances:

• You don't want the menu to be visible.

• You want to work with graphics objects larger in either dimension than 131 X 56.

• You want "animation," or to watch a display continuously as it is being created.

-284-

1
I
I
I

Display Operations And Graphics

I MINISTK Small-font Slack Display F76F

« #131d #56d BLANK

DEPTH 1 - 9 MIN

IF DUP

THEN #50d ~ y

« 1 SWAP

FOR n #Od y 2 ~LlST

n ~STR 1 DUP SUB

":" + 1 ~GROB REPL

n 1 + PICK 1 ~GROB

{#Od #Od} {#120d #5d} SUB

#131d OVER SIZE DROP -

Y 2 ~LlST SWAP REPL

'y' #6d STO-

NEXT ~LCD 3 FREEZE

ELSE DROP2

END

Create a blank display-sized grob.

Make up to nine object grobs.

If the stack is not empty ...

Start in row 50.

From 1 to depth ...

Coordinates of level number.

Convert the level number to a string.

Add ":", convert to a grob, add to pic­

ture.

Make the nth object into a grob.

Clip to 121 columns, if necessary.

Right-justified position.

Add the object to the picture.

Decrement the vertical position.

Display the picture.

Do nothing if the stack is empty.

• You want to usc any of the automated plotting or drawing facilities.

10.3

The picture screen is also more convenient than the text screen, because you can usc the
pseudo-name PICT to manipulate the picture screen like an ordinary graphics object.
PICT is actually a command (type 19), but you can usc it in two ways:

1. As a graphics object. PICT can be used as an argument for commands that work
with graphics objects: SIZE, SUB, GOR, GXOR, and REPL. For the last three
commands, PICT may only be used as the first (level 3) argument. With that
argument, the three commands return no result to the stack--the result becomes
the new picture screen. Furthermore, there are operations on the PICT grob that
are not provided for other grobs: line, box, and arc drawing, and the ability to con­
trol and test individual pixels in the grob.

2. As a "variable." Using PICT like a quoted name allows you to treat the picture
screen like a variable containing a grob representing the current picture. Specifi­
cally, grab PICT STO stores grab into the picture screen, replacing the current con­
tents; PICT RCL returns the current contents of the picture screen to the stack as
a graphics object, and PICT PURGE deletes the picture screen and recovers the
associated memory. Note: you should not use I I quotes around PICT.

-285-

10.3 . Display Operations And Graphics

There are several ways to create and dimension the picture screen. Any time you use
any plotting or drawing commands, the picture screen is automatically created with a
size of 131 x 64, if it does not already exist. This also occurs if you use GXOR, GOR, or
REPL with PICT. To create a new picture screen, you can:

• Store a grob with PICT STO. If you store a grob smaller than 131 X 64 into the pic­
ture screen, it will occupy the upper left corner of the picture screen, with the
remainder of the screen blank, but the picture screen will be at least 131 X 64 .

• Execute #m #n PDIM. This creates an m Xn picture screen (again with a minimum
size of 131 X 64).

To observe some of these PICT operations in action, try executing the following three
programs (which use SPOT and GBOX from section 10.3.1):

I ASTO Animarion with STO 92F5

« SPOT PleT STO
{#O #O} PVIEW
1 10
START GBOX PleT STO

SPOT PleT STO
NEXT

Storc.the SPOT grob in PICT.
View the picture screen.
Repeat 10 times:
View the square.
View the circle.

I AREPL Animarion with REPL 5F31

« SPOT PleT STO
{#O #O} PVIEW
1 10
START PleT {#O #O} GBOX REPL

PleT {#O #O} SPOT REPL
NEXT

Store the SPOT grob in PIer.
View the picture screen.
Repeat 10 times:
View the square.
View the circle.

I APVIEW Animation with PVIEW EA43

« #131d #128d PDIM
PleT {#Od #Od} SPOT REPL
PleT {#Od #64d} GBOX REPL
1 10
START {#Od #Od} PVIEW
{#Od #64d} PVIEW
NEXT

-286·

Create a 131 x 128 picture screen.
Store the circle in the top half.
Store the square in the bottom half.
Repeat 10 times:
View the circle.
View the square.

I

Display Operations And Graphics 10.3

All three programs demonstrate a simple kind of animation on the picture screen, where
the picture alternates between a circle and a square. ASTO and AREPL achieve this by
changing the actual contents of the picture screen. You can observe that using REPL
produces a faster and smoother animation than using STO. This is because STO actu­
ally replaces the picture screen grob, whereas REPL merely rewrites the pixels in the
existing grob. The "noise" you see between frames in ASTO occurs when the HP 48 is
moving the new grob into place, causing the temporary display of random memory bits.

The fastest animation is exhibited by APVIEW, since both frames of the picture are
stored in the picture screen in advance. All that is necessary then is to alternate which
half of the screen is shown, which can be done quite rapidly. Another variation on this
theme is illustrated in the program BOUNCE, where the appearance that the spot is
bouncing around the screen is actually achieved by moving the window rather than
changing the picture.

I BOUNCE Bouncing Ball Demo

«#222d #88d PDIM
PICT {#56d #14d} SPOT REPL

#45d #11d #1d DUP
- x y vx vy

« DO
x y 2 -LIST PVIEW
vx 'x' STO+
IF x #91d = =

x #1d == OR
THEN 'vx' SNEG
END
vy 'y' 5TO+
IF y #23d ==

Y #Od = = OR
THEN 'vy' SNEG
END

UNTIL KEY
END DROP

10.3.4 AN I MATE

4CD8

Dimension the picture screen.
Put the spot in the center of the
screen.

Initial values for window position
and increments.
Repeat the following:
View the picture screen.
Increment window x position.
If at the left edge,
or the right edge,
then negate the x increment.

Increment window y position.
If at the top edge,
or the bottom edge,
then negate the y increment.

Quit when a key is pressed.
Discard the key code.

The mechanism used for animating y-slice plots (described in Part If) is available for
general use as the command ANIMATE. This command takes n graphics objects from
stack levels 2 through n + 1 and displays them sequentially (starting with the object in the
highest stack level) on the picture screen. The level one argument is nominally a list of

-287-

10.3 Display Operations And Graphics

the form

{Il {#x #y} Llt N},

where n is the number of grobs in the sequence, x and yare the pixel coordinates of the
screen position where the (upper-left corners of) the grobs are to be displayed, Llt is the
number of seconds each grob is displayed, and N is the number of repetitions of the
entire sequence. If N = 0, the display will continue for one million repetitions (effec­
tively, until you interrupt it with [ill[]). The smallest display time is about 0.07 seconds,
which you can obtain by using Llt = O.

You can substitute a single real number 11 for the argument list, which is equivalent to
using a default list

{Il {#O #o} .17 O}.

ANIMATE leaves its arguments on the stack (regardless of whether it completes N itera­
tions or is interrupted hy [ill[]). There is no apparent reason for this violation of nor­
mal command convention, so you just have to remember to remove the left over argu­
ments afterwards.

To illustrate the use of ANIMATE, the program MFRAMES creates a list of graphics
objects from a series of wireframe plots of a three dimensional damped cosine curves,
such as this sample:

MFRAMES stores its output as a list in a variahle FRAMES. You can then display a
"movie" from the graphics objects by executing the program SFRAMES. Press [ill[] to
terminate the display.

-288-

,
~
I
i
1

l

I

Display Operations And Graphics

/ MFRAMES Make frames for ANIMATE

«PICT PURGE

'~t*(l - vi ((X~2+ Y~2)/2))*COS(7*(X~2+ Y~2))*.7'
STEQ

{(-.5,1) (.5,2.5) {X 0 11} 1 (0,0)

WIREFRAME Y} 'PPAR' STO

{ -1 -1 1 -1 1 -1

-1 1 0 -3 3 12 12}

'VPAR' STO

-1

FOR ~t

ERASE DRAW PICT RCL

2 STEP

11 -LIST DUP

2 10 SUB

REVLlST

SWAP OBJ- 1 + ROLL OBJ- DROP

20 -LIST ' FRAMES' STO

/ SFRAMES

« FRAMES OBJ- DROP

{20 {#O #O} 0 O}

ANIMATE

21 DROPN

»

10.3.5 Logical Coordinates

Show Animated Frames

3318/

Reset the picture screen.

Store the current equation.

Store the plot parameters.

Store the 3-d plot parameters.

For ~t from -I to I:

Draw one frame.

Increment ~t.

Duplicate the frames.

Discard the first and last duplicate.

Reverse the duplicates.

Put the frames on the stack.

Combine into one list and store.

Get the frames.

ANIMATE parameters.

Do the animation.

Discard the arguments.

4CA6/

10.3

All of the positions within graphics objects that we have specified so far have been
expressed as pixel numbers. However, when you refer to positions in the picture screen,
you also have the option of using logical coordinates. These are floating point numbers
derived from a coordinate system imposed upon the picture screen according to the plot
parameters in the variable PPAR. The first two elements in the list stored in PPAR are
complex numbers (x min' Y min) and (x max, Y max), which respectively specify the logical
coordinates of the bottom left pixel and the upper right pixel of the picture screen.
(Here x represents the horizontal direction, positive to the right, and Y the vertical direc­
tion, positive upward.)

-289-

10.3 Display Operations And Graphics

The conversion between pixel numbers and logical coordinates is as follows. A position
(x,y) falls on the m-n pixel ({ #m #n }), where

m = RND[CM-l) X-Xmin ,oj
X max ~ X min

n RND f(N-I) Ymax - Y ,0]
Ymax - Ymin

M is the width of the picture screen in pixels, and N is the height. RND is the HP 4X
function RND. Conversely, the X-Y coordinates center of the m -n pixel are:

II
Y = Ymax - (Ymax - Ymin) N-l

These formulae are implemented in the commands C~PX (Coordinates-to-PiXels) and
PX~C (PiXels-to-Coordinates). C~PX takes a complex number representing coordinates
(x,y) on the picture screen, and returns a list { #m #11 } containing the corresponding
pixel numbers. PX~C is the inverse, converting pixel coordinates to logical coordinates.
These commands are only relevant to the picture screen, or stack grobs that happen to
have the same dimensions as the current picture screen. The logical coordinate system
is always determined by the values in PPAR, which also are intended for use with the
picture screen.

The commands that can accept logical coordinates are GOR, GXOR, REPL, and PVIEW,
plus the pixel drawing commands described in the next section. Logical coordinates are
often more convenient for mathematical function graphics, whereas pixel coordinates are
preferable for making prompting displays and drawing simple geometric figures. Arith­
metic with binary integers is also faster than with floating-point complex numbers.

10.3.6 Pixel Drawing
The IPRGI ~PICT~ menu contains several drawing tools for producing simple graphics on
the picture screen. These commands do not work with stack grobs; if you want, for
example, to draw a line in any grob you must first store it into the picture screen.

The most basic tools are commands that turn individual pixels on and off. PIXON turns
on the pixel specified by its coordinates, entered either as logical coordinates (complex

-290-

l
1

1
I
I
I
I

!

J

Display Operations And Graphics 10.3

number) or pixel coordinates. As an example of using PIXON, the program DRAWPIX
imitates the command DRAW. As listed, DRAWPIX i~ only a slower substitute for
DRAW, but you can use it as a starting point for creating modified plotting programs to
obtain results you can't get with DRAW.

IDRAWPIX DRA W using PIXEL 2641 I

«PICT SIZE #64d - 2

SWAP #131d - 2 / SWAP

2 -LIST PVIEW

»

PPAR 1 GET RE

PPAR 2 GET RE

PPAR 4 GET

IF DUP 0 SAME

THEN DROP #1

END

IF DUP TYPE

THEN

IF DUP #0 SAME

THEN DROP #1

END B-R OVER 4 PICK -

PICT SIZE DROP B-R /

END

PPAR 3 GET

- step indep

IF indep VTYPE 1 +
THEN indep RCL 3 ROLLO

ELSE 0

END 3 ROLLO

FOR x

x indep STO

EQ -NUM

x SWAP R-C

PIXON

step STEP

IF THEN indep STO END

View the center ,)f the picture s('reen.

(Jet x mm'

Get x max'

(iet the resolution.

Default real case

If ifs not a realr,umber.

Default binary ('eSC.

then compute the step size.

(iet the independent variable name x.

If the independc1t variable exists.

then keep its val Ie and (niC.

Otherwise false.

Save the flag.

Loop from x nun [0 xn=:

Store the curren', value of x in the independent

variable.

Evaluate the current equation (y).

Combine the coordinates into a complex

number.

Plot the point.

Increment x and repeat.

Restore the original value.

-291-'

10.3 Display Operations And Graphics

The counterpart of PIXON is PIXOFF, which turns off a pixel specified by its coordi­
nates. You can also test whether a pixel is currently turned on by executing PIX?, which
returns true if the specified pixel is on, and false if it is off. It is a simple matter also to
reverse the state of a pixel, using the program TPIX:

TPIX TOf!.J!.le a Pixel 7259

level 1 I
{#m #n} lL:l"

(~,y) U'

« DUP Copy the coordinates.
IF PIX? If the pixel is on,
THEN PIXOFF then turn it off.
ELSE PIXON Othetwise turn it on.
END

»

LINE and TLiNE allow you to draw straight lines much more rapidly than you can using
PIXON and PIXOFF. Both require two arguments, which specify the start and end
points of a line. The arguments can be either complex numbers or lists of binary
integers, but both must be the same type. LINE draws by turning on all of the pixels on
a straight line (allowing for the finite size of the pixels) bctwccn and including the start
and end point. TLiNE reverses the pixels along the line, which is useful when you arc
drawing lines across dark areas. Thc use of LINE is illustrated in the next two pro­
grams. STAR draw a five-pointed star, using the second program SKETCH. Thc lattcr
takes a list of coordinates and draws lines between cach successive pair of points.

I STAR Draw a Star F19D I

« RCLF -16 SF DEG -19 SF

'PPAR' PURGE

(0,2.5) DUP

o 4

START V- 144 + -V2

DUP SWAP

NEXT

DROP 6 -LIST

{#O #O} PVIEW

SKETCH

STOF

-292-

Polar mode, degrees. V2 complex.

Initialize.

Start at (0,2.5).

Rotate by 144".

Add the point to the stack.

Combine into a list.

Omit this if you don't want to watch.

Connect the dots.

Restore previous modes.

1
.j

I

Display Operations And Graphics 10.3

SKETCH Sketch Lines C1A7

level 1 I

{ list of points} OJ"

« - points Store the list.

« 1 points SIZE 1 - One fewer lines than points.

FOR n

points n GETI 3 ROLLO GET Get the next pair of points.

LINE Use TUNE to toggle the lines.

NEXT
»

»

Executing STAR yields this picture:

The command BOX provides an easy method for drawing rectangular boxes, specified by
two sets of coordinates (pixel or logical). For example, to draw a simple frame around
the picture screen, execute FRAME:

I FRAME Frame the Picture Screen

« {#O #O}

PICT SIZE

#1 - SWAP #1 - SWAP 2 -LIST

BOX

Upper-left comer.

Screen dimensions.

Lower-right comer.

Draw the box.

2C4F

The final built-in drawing command is ARC, which draws circular arcs on the picture
screens. ARC uses four arguments, either

-293-

10.3 Display Operations And Graphics

or

where x and yare the coordinates of the center of the arc, expressed either as a com­
plex number or as a list of binary integers, and r is the radius in logical coordinates or
pixels. 61 and 62 , expressed in the current angle mode, are the starting and ending
angles of the arc, which is always drawn counterclockwise (increasing angle). The follow­
ing sequence uses ARC and the other programs listed in this section to draw a circle
around a star, framing the whole picture screen for good measure:

STAR (0,0) 2.5 a -1 ACOS 2 * ARC FRAME 7 FREEZE

ARC docs not attempt to compensate for differing plot scales in the vertical and hor­
izontal directions--it will not draw an ellipse. It always draws an arc of constant radius
ill pixels. The pixel specified by the coordinates (x,y) + (r,6::6 1) is taken as the starting
point of the arc; the distance in pixels from that point to the center pixel (x,y) is then
used as the actual radius r', where r' has the same sign as r. The arc drawing stops at
the pixel specified by (r', 6::62). Note also that

• If 61 = 62 , one pixel is turned on, at (x,y) + (r,6::6 1).

• If I 62 - 61 I > 3600
, then the drawing stops after one full circle is drawn from 61 .

10.3.6.1 OtT-Screen Coordinates
The drawing commands PIXON, PIXOFF, PIX?, LINE, TLlNE, BOX, and ARC, and the
coordinate conversions C~PX and PX~C, all accept coordinate arguments that
correspond to pixel positions that do not fall on the current picture screen. This
includes negative pixel numbers in the range #80000h to #FFFFFh, which represent
pixels that are above or to the left of the screen. While you can never view pixels that

-294-

Display Operations And Graphics 10.3

are off-screen, their coordinates may be useful:

• When you are doing any kind of iterative plotting, you don't have to check each set
of coordinates for PIXON or PIXOFF to verify that it falls on the picture screen.
The checking is done automatically by the commands, which just do nothing for off­
screen pixels. PIX? always returns false for off-screen positions .

• You can use LINE, TLlNE, BOX, and ARC when their position arguments are off­
screen. This allows you to draw parts of figures too large for the screen by drawing
the entire figure without regard to off-screen portions. In particular, the center of
an arc drawn by ARC does not have to lie within the picture screen, nor do the start
and end points of the arc.

LINE, TLlNE, and BOX are smart enough to "clip" any portions of lines that arc off­
screen, so that they will not spend unnecessary time plotting invisible points. ARC is not
so enlightened; if you use ARC to draw a circle that only partially fits on the picture
screen, ARC takes just as long to execute as it would if the screen were large enough to
contain the entire circle.

For all four commands, keep in mind that the dynamic range of pixel coordinates is lim­
ited to #/i0001 h-#7FFFFh (± 5242/i7); if you use logical coordinates that correspond tn
pixel numbers out of this range, the coordinates are truncated to the allowed range.
You can see this when you use LINE, for example, to draw a line between two points
along the - 4SO line. With the default plot parameters, arguments of (-100,100) and
(100, -1 00) yield a line through the origin (0,0), as you would expect. But if you
increase the coordinates to (-1 00000, 1 00000) and (100000, -100000), the line is drawn
at -4SO through pixel {#O #O}, passing below the logical origin. This is because the
larger arguments are truncated to {#80001 h #80001h} and {#7FFFFh #7FFFFh},
respectively.

-295-

11. Arrays and Lists

The HP 48 a"ay and list object types allow you to deal with collections of numbers or
other objects as single units, as well as to access the individual objects in the collections.
You are probably familiar with one-dimensional arrays--vectors--and two-dimensional
arrays--matrices--from mathematics. These are one-dimensional (vectors) or two­
dimensional (matrices) ordered sets of numbers that satisfy certain rules of arithmetic
and transformation properties. However, you may find the idea of a list as a useful
computational tool to be a new concept, since other calculator languages and most com­
puter languages have no equivalents. (Lists will be very familiar to you if you have stu­
died LISP, or a similar computer language.) In mathematics the closest counterpart is
the set, usually a collection of objects with some common property.

11.1 Arrays
A unique feature of the HP 48 related to array computation is the calculator's ability to
manipulate arrays as self-contained units--as objects. This means, for example, that you
can perform array arithmetic on the stack using the same steps and commands as you
would for real number arithmetic. Programs can use arrays as input and return arrays
as output; the arrays themselves contain all of the dimensional information that the pro­
grams need to deal with the data in the arrays. The mathematical operations that the
HP 48 provides for matrices and vectors arc useful and powerful, but it is the ease with
which you can apply the operations to arrays that is the strength of the HP 48. We will
not dwell on the mathematical commands here, since they arc described adequately in
the owner's manuals. Instead we will focus on the array manipulation commands and
methods. The examples in the following sections use real arrays, but all of the com­
mands apply uniformly to complex arrays as well.

11.1.1 Array Creation

• ~ARRY assembles a series of numbers on the stack into an array:

2 3 4 4 ~ARRY u- [1 2 3 4]

2 3 4 {4} ~ARRY u- [1 2 3 4]

2 3 4 {2 2} ~ARRY n [[1 2]
[34]]'

The level 1 argument of ~ARRY determines how many numbers are taken from
higher stack levels to form the array, and the dimensions of the array. When the
argument is a real number n, or a list { n }, then n additional numbers are taken

-297-

11.1 Arrays and Lists

from the stack to form an n-element vector. If the argument is a two-element list,
e.g. {n m }, nom numbers are combined into an n Xm matrix. The order in which
the array elements are taken from the stack is called row-order. This order has ele­
ment 1 or 1-1 in the highest stack level, followed by the elements of the first row in
left-to-right order, then by the row 2 elements, if any, and so forth, ending in level 2
with the last element in row n.

• The inverse of ~ARRY is OBJ~ (you can also use ARRY~). Reversing the previous
examples:

[1 2 3 4] OBJ~ n 2 3 4 {4}

[[1 2] 0
[3 4]] BJ~ L1 2 3 4 {2 2}

OBJ~ returns the elements of an array as individual numbers in row order, and
leaves the dimension list in level l. Notice that OBJ- always returns the
dimension(s) in a list, even when its argument is a vector.

• You can also disassemble an array into vectors representing the array's columns:

[[1 2]
[34]] ~COL n [1 3] [2 4] 2.

Thc real number returned to level 1 indicates the number of columns in the array.
COL-reassembles the vector, using a real number argument to indicate the number
of columns:

[1 3] [2 4] 2 COL - n

Similarly, you can work with rows:

[[1 2]
[34] r

[f ~ ~ 1] ~ROW n [1 2] [3 4] 2.

[1 2] [3 4] 2 ROW~ n [[1 2]
[34]]'

• Two commands are available for creating constant arrays. IDN (IDeNtity) creates an
n X n identity matrix specified by a real number argument n:

[[1 00]
3 ION n [010]

[0 0 1]]

ION can also change an existing array (on the stack or specified by name) into an

-298-

Arrays and Lists 11.1

identity matrix of the same size. In that case, of course, you don't need to specify
the dimension of the matrix. If the initial matrix is complex, the resulting matrix will
also be complex, with diagonal elements (1,0).

CON (CONstant array) creates an array dimensioned according to a list in level 2,
where all of the elements have the same value, specified by a real or complex
number in level 1. Like ION, CON will also use an array (or its name) as its level 2
argument. If the initial array is real, then the new constant value in level 1 must also
be real. For an initial complex array, the constant value can be real or complex; for
a real number x, the result array will remain complex, with elements (x,0).

• To determine the dimensions of an array, use SIZE.

[[1 2]
[3 4] SIZE LY' {3 2 }
[56]]

11.1.2 Array Rearrangements
Several commands arc provided for rearranging array elements without changing any of
their values.

• ROM (ReDiMension) reorganizes the clements of an array into an array with dif­
ferent dimensions, while preserving the row order of the elements. The arguments
for this command are the original array in level 2 and the dimension list for the new
array in level 1:

[[1 2 3 4] {4 2} ROM Il:?
[5678]]

[[1 2]
[34]
[56]
[78]]

If the dimension list { m n } specifies a new array with fewer elements than the origi­
nal, ROM uses only the first m'n elements of the original and discards the
remainder. If the new array requires more elements than the original, the missing
elements are filled by zeros.

You can also apply ROM to an array stored in a global or local variable by substitut­
ing the variable's name for the argument array. The result array replaces the origi­
nal array in the variable.

• TRN (TRaNspose) replaces a matrix by its (conjugate) transpose, where the matrix

-299-

11.1

can be on the stack itself, or represented by a variable name:

[[1234]_
[5 6 7 8]] TRN LT

[[1 5]
[26]
[37]
[48]]

Arrays and Lists

TRN does not work with vectors: if you want to transform a vector into a single-row
matrix, use this sequence:

OBJ- SWAP + -ARRY.

• RSWP and CSWP take a matrix and two row or column numbers, and exchange the
respective rows or columm.

[[1 72] [[1 72]
[384] 2 3 RSWP LT [5 9 6]
[5 9 5]] [384]]

[[1 72] [[1 27]
[384] 2 3 CSWP [L.:;i' [548]
[5 9 5]] [36 g]]

11.1.3 Single-Element Operations
Thc GET and PUT commands described in section 6.3 are applicable to arrays:

• To extract individual numbers from an array, use GET or GETI

[[1 2]_
[3 4]] {2 1} GET ~ 0'" 3.

• To substitute numbers into an array, use PUT or PUTI:

[[1 2] { 2 1} 8 PUTI n
[34]]

[[12] {22}
[84]]

the { 2 1 } element in the array is replaced with a new value 8, and the next index is
returned.

11.1.4 Rowand Column Operations
There are four commands for inserting and deleting array rows and columns.

• ROW + and COL + take a matrix, a vector, and a row or column number, and insert
the elements of the vector as a new row or column, respectively.

·300-

Arrays and Lists

[[1 2]
[34] [78] 2 ROW+ n
[56]]

[[1 2]
[3 4] [789] 2 COL+ n
[56]]

[[1 2]
[78]
[34]
[5 6]]

[[1 72]
[384]
[596]]

11.1

• ROW - and COL - extract a row or column from a matrix, returning the smaller
matrix as well. The original matrix must have at least two rows or columns.

[[1 2] [[1 2] [78] 2 ROW- L~ [34] [7 8] [34] [56]] [56]]

[[1 72] [[1 2]
[384] 2 COL- L% [34] [7 8 9].
[596]] [55]]

11.1.5 Subarray Operations
The SUB and REPL commands are extended on the HP 48G/GX to work with subar­
rays, both matrices and vectors. SUB's stack arguments for arrays are analogous to
those used for strings (section 3.4.3.3) and lists (section 11.4.1):

In this case, start and end specify the corner elements of the subarray within the original
array. The elements may be specified either by

• number, counting in row order (section 11.1.1) from the first element:

[[1 72]
[3 8 4] 2 9 SUB n
[596]]

or by

[[72]
[84] ;
[96]]

• row and column, using a two-element list {row number}:

[[1 72]
[3 8 4] {1 1} {3 2} SUB G

[596]]

[[1 7]
[38]
[59]]

Start and end may either be in either style--they don't have to match. The order of the

·301·

11.1 Arrays and Lists

two arguments doesn't matter, nor does which pair of opposite corners of the subarray
is specified--upper left and lower right, or lower left and upper right. The only restric­
tion is that both elements actually fall within the original array. You may use list argu­
ments even when the original array is a vector, except that the row number must be 1.

REPL allows you to replace a sub array within one matrix or vector with the contents of
another. The general syntax for REPL is

array position array' REPL LT array".

REPL replaces the subarray within array with its upper-left element specified by position,
with array' :

[[1 721
[3841 {2 2}
[59511

[[001
[0011

REPL U"

[[1 721
[300 I
[500 II

Position can be specified either as { row column} or as a single element numbcr. REPL
will error (Invalid Dimension) if the replacement array' does not fit within the initial
array, to the right of and down from position.

Other common matrix manipulations can be programmed by combining the commands
described in the last few sections. For example, the program MINOR takes a matrix, a
row number r, and a column number c, and returns the rc minor of the matrix:

MINOR Minor of a Matrix 6F89

level 3 level 2 ICl'cll I level 1

[I matrix IJ r c U" [I matrix' IJ

«3 ROLLO I c [I matrix IJ r I
ROW- DROP Remove the rth row.

SWAP COL- DROP Remove the c column.

»

Programs in subsequent sections of this chapter contain several additional examples of
the uses of array manipulation commands.

·302·

Arrays and Lists 11.2

11.2 Symbolic Access to Array Elements
Although arrays can not be embedded directly in expressions, you can still use expres­
sions to represent array calculations symbolically. Any name appearing in an expression
can refer to a variable containing an array. You can apply any symbolic manipulation to
such an expression; but when you evaluate it, the result must be a numeric array and
not an expression. For example, if variable A contains the vector [1 2], and B is [3 4
], then evaluation of I A+B' returns [46]. However, if B is undefined, then evaluation
of the expression returns the Bad Argument Type error when the + is applied to a vec­
tor and a name.

In addition to this ordinary use of names within expressions to refer to stored arrays,
you can use a function-like syntax to access individual array elements. Consider sub­
tracting the second column from the first in a ten-row matrix I MAT', replacing the first
column with the difference. Using GET and PUT explicitly, this is accomplished by

1 10 FOR n MAT 1 n GET MAT 2 n GET - MAT 1 n PUT NEXT.

The following sequence accomplishes the same thing, but it is rather more readable:

1 10 FOR n 'MAT(n,1)-MAT(n,2)' EVAL IMAT(n,1)' STO NEXT.

The general syntax for recalling an nth element is name(n) for vectors, and name(m,n)
for matrices, where name is the name of a variable containing an array, and m and n
are element numbers. For example, with variable A and B defined as above,

I A(1) + B(2)' EVAL D' 5.

(The vector syntax with a single element number also works when the named variable is
a list). Evaluating expressions like these actually invokes GET, e.g. IM(1,2)' EVAL is
equivalent to 'M' { 1 2} GET when variable M contains a matrix. (If the evaluation
fails because the element index is out of range, the error message will specify a GET
error.) To execute PUT in a similar manner, you can use an expression as an argument
for STO:

object 'X(n)' STO

stores object as the nth element of the array or list X. If X contains a list, object may be
of any type. If X contains a vector or a matrix, object must be a number. In the case of
a matrix, X can have one or two indices; either

25 IX(3)' STO

-303-

11.2 Arrays and Lists

or

25 'X(2,1)' STO

stores 25 into the 2-1 element of a 2 X 2 matrix stored in X.

The command RCIJ replaces a row j of a matrix with the sum of that row and a second
row i multiplied by a factor f. The program CRCIJ operates similarly on two matrix
columns, demonstrating the application of symbolic indexing. (You could use RCIJ on a
transposed matrix then transposing the result, but RCIJ is easily altered for use with any
two-column operation).

CRCIJ Column-wise RCf}

level 4 level 3 level 2 level 1

[[x II i j f

« - mat i j f Store arguments.

« 1 mat SIZE HEAD Number of rows.

FOR n

'f*mat(n,i) +mat(n,j)' EVAL Compute the sum.

'mat(n,j)' STO Replace the value.

NEXT

mat Return the matrix.
»

»

• Example.

[[1 2 3]
[4 5 6] 2 3 -1 CRCIJ L~
[789]]

11.3 Vectors and Coordinate Systems

I

U"

levell

[[x' II

[[1 2 1]
[451]
[781]]

DC39

HP 48 vectors are one-dimensional arrays represented as a series of real or complex
numbers enclosed in single brackets []. When a vector is entered or displayed, the ele­
ments are shown in a horizontal format suggesting a row (covariant) vector. However,
HP 48 vectors actually have the mathematical properties of column (contravariant) vec­
tors. This means, for example, that an n-element vector v is conformable for pre­
multiplication (A'V) by an m Xn matrix A. The vectors are displayed horizontally in

-304-

T
i

Arrays and Lists 11.3

order to show as many elements as possible on the display. You can represent row
(covariant) vectors as 1 x n matrices.

The HP 48 provides two commands for computing vector products. DOT computes the
dot, or inner, product of two vectors of the same dimension: if Xi and Yi are the ith ele­
ments of two vectors of size N, then the dot product is defined as

ASS applied to a vector returns

N

LXiYi.

i=l

which is equivalent to the square root of the absolute value of the dot product of the
vector with itself. The following program uses ASS to compute the angle between two
vectors

VANGLE Any,le Between Two Vectors F518

level 2 level 1 I levell

[Xi I [Yi I Lr 6

« DUP2 DOT xl
SWAP ABS / xY; Ix I
SWAP ABS / xY;Clxl I.y I)
ACOS 0

»

For two- and three-dimensional vectors, CROSS computes the cross-product z = x x y
of two vectors, where

Zi = L XjYk Eijk
j,k

{

o ifi =j, j =k, or i =k
E'jk + 1 if i, j, k are in cyclic order

- 1 otherwise.

CROSS's result is always a three-element vector. A two-element vector used as an
argument is treated as a three-element vector. If both arguments are two-element

-305-

11.3 Arrays and Lists

vectors, then the result is a vector of the form [0 0 z].

11.3.1 Coordinate Systems
Because two- and three-element real vectors are common in engineering and physics,
the HP 48 provides special capabilities associated with this class of objects. In particu­
lar, the vectors can be entered, displayed, and analyzed in polar coordinates as well as in
rectangular coordinate systems.

In two dimensions, the position of a point is represented by a radial coordinate p and a
polar angle <1>:

y

y

p

~~~~-l'-~~'--~.L-~---,,>-X 
x 

The conversions between polar coordinates (p,<\» and rectangular coordinates (x,y) arc 
given by: 

p = (x2 + y2)1!2 
<1> = tan-I(y/x) 

x = p cos <1> 
y p sin <1> 

In three dimensions, two types of polar coordinates are used, cylindrical and spherical. 
The conversions between rectangular and cylindrical polar coordinates arc the same as 
for the two-dimensional case, with the z-coordinate the same in both systems. For 
spherical polar coordinates (r,<1>,6), the conversions with rectangular coordinates (X;y,z) 
are 

-306-

I 
1 

1 



Arrays and Lists 11.3 

x = r sin e cos <p 

<p = tan - 1 (y Ix) y = r sin e sin <p 

e - (x 2 + y2)" = tan 1 -"'-------'-- z = r cos e 
Z 

z z 

z z 

e r 

x------;-----;y~--"'" y )<'-------;----ry-'S> y 

I / I / 

x __________ -=-.:::.V/ , / X ___________ "v 

x x 
Cylindrical Polar Coordinates Spherical Polar Coordinates 

HP 4~ vectors are always stored in memory in rectangular coordinates. However, you 
can choose to display vectors in polar form, and to create and take apart vectors using 
polar values. 

The display of vectors is controlled by the coordinate mode encoded in flags - 15 and 
-16. If flag -16 is clear, then rectangular mode is active. If !lag -16 is set, then flag 
- 15 determines which of the polar modes is active: clear means cylindrical polar mode, 
and set means spherical polar mode. You can change modes by setting or clearing 
these !lags, but it is easier to use one of the commands RECT, CYLlN, or SPHERE (in 
the C:5J iMODESi ~ANGL~ menu), which set the modes corresponding to their names. You 
can also use ~ iPOLARi , which switches back and forth between rectangular mode and 
whichever of the two polar modes was last selected by one of the menu keys or by set­
ting or clearing flag -15. The current coordinate mode is indicated in the status area of 
the display, where the symbol R&:Z means cylindrical polar mode, and R&:&: means spheri­
cal polar mode. If neither symbol is visible, rectangular mode is active. 

-307-



11.3 Arrays and Lists 

In either polar mode, the HP48 displays a two-dimensional vector in the form [p, '{cPJ. 
where the angle symbol ,{ indicates that the latter number is to be interpreted as the 
polar angle. (This discussion also applies to complex numbers, using parentheses 
(p,'{cP) rather than vector delimiters [p, ,{cP].) The numerical value of the angle also 
depends on the current angle mode, which can be degrees, radians, or grads: 

[5J lMODESl ~ FME 
~STD~ [5JlMODESl 
~ANGL~~DEG~ 

~ [11] u-
-CYLlN- L"" 

~ u 
=GRAD= L~ 

[1 1] 
[1.41421356237 '{45] 
[1.41421356237 ,{.785398163397] 
[1.41421356237 '{50] 

You can also enter a two-element vector in polar form by including an angle symbol ,{ 
in front of the second number, which is interpreted as an angle according to the current 
angle mode. Notice, however, that a vector entered in polar form may not keep exactly 
the values that you enter: 

DEG [25 '{225] lENTERl D7 [25.0000000001 ,{ -135 ] 

This is because the polar coordinates are converted to rectangular coordinates to store 
the vector, then are converted back to polar form for display. The finite precision 
conversions may introduce changes in the twelfth decimal place. Also, since ATAN is 
used in the conversion, the displayed polar angle will always have a value between - 1800 

and + 180°. 

The fact that all vectors are stored in the same rectangular format regardless of display 
mode means that they are suitable for various operations without needing any prelim­
inary conversions. You can perform vector arithmetic, for example, directly in polar 
form: 

[1 '{45] [1 ,{-45] + a.::r [1.41421356237 '{O] 

All of the properties described for two-dimensional vectors apply as well to three­
dimensional vectors, in which the second and third elements may include angle symbols 
to indicate polar coordinates. If the second element (only) of a three-element vector is 
entered or displayed with a leading angle symbol, the vector is being represented in 
cylindrical polar coordinates [p '{cP z]. A vector with the second and third elements 

-308-



Arrays and Lists 11.3 

starting with angle symbols is interpreted in spherical polar coordinates [r Llj> L8]. 

~~RECE [1 

=CYLlN= 
-SPHER-

1] Q] 

L~ 

[1 1 1] 
[1.41421356237 L45 
[1.73205080757 L45 

1 ] 
L54. 7356103172 ] 

You can not use the MatrixWriter to enter or edit vectors in polar form; there is no 
provision for including the angle symbol in any element field. However, you can enter 
two- or three-element vectors without using [] delimiters or angle symbols by using the 
commands ~V2 and ~V3, which respectively assemble two- and three-element vectors 
from real numbers on the stack. Both of these commands respect the current coordi­
nate and angle modes in the interpretation of their stack arguments. For example, in 
rectangular coordinate mode, 

2 ~V2 [1 2] 

The stack order of the arguments is the same as the order of the elements in the result 
vector. In either polar coordinate mode, the first argument is the vector magnitude, and 
thc second the polar angle: 

DEG 45 ~V2 Q T [1 L45]. 

In this case, the current angle mode determines the angle measure of the second argu­
ment (degrees in this example). 

~V3 uses 3 arguments to form a 3-element vector: 

RECl 2 3 -V3 [1 2 3] 

CYLIN 45 2 -V3 [1 L45 2] 

SPHERE 45 50 ~V3 U· [1 L45 L50] 

V~ serves as the inverse for both ~V2 and ~V3; the meaning and number of the results 
it returns depends on the size of its argument vector: 

RECT [1 2 3] V~ L~ 2 3 

CYLIN [1 L25] V~ U" 25 

-309-



11.3 Arrays and Lists 

Actually, V~ will decompose a vcctor of any size: 

[1 2 3 4 5] V- u 2 3 4 5 

For vectors with 4 or more elements, the elements are always treated as rectangular 
components, and the coordinate and angle modes do not matter. The differences 
between V~ and OBJ- for vectors are the special handling of 2- and 3-element vectors 
by V-, and that V- does not return the element count to the stack. 

On the HP 48S jSX, -V2 and -V3 are available as primary keyboard operations via the 
~ cru and ~ ~ keys. If level 1 already contains a vector, either of these opera­
tions executes V-. The 20 and 30 operations are not included in the HP48GjGX, but 
you can duplicate their effects with the following programs: 

D2 lD Program 10C 

1!!I'cl :? "~'cI 1 I 1!!I'cI l 1!!I'cll 

x y or [ x y 1 
[ x y 1 or x y 

IF DUP TYPE NOT If level one contains a real numher. 

THEN -V2 Then execute -V2: 

ELSE V- OthelWise. execute V-. 

END 

» 

D3 3D Program 5B19 

1!!I'e! 3 I!!I"C! l I!!I"C! 1 I 1!!I'c13 1!!I'ell 1!!I'eI 1 

x y = L.r- [x y z 1 
[x y = 1 L¥' X Y z 

« IF DUP TYPE NOT If level one contains a real number, 

THEN -V3 Then execute -V3: 

ELSE V- Otherwise, execute V-. 

END 
» 

-310-



Arrays and Lists 11.3 

11.3.2 Example: Coordinate Transformations 
Consider two coordinate systems, where the second is derived from the first by 1) 
displacing the origin by an amount given by the vector T, and 2) rotating the axes 
through an angle ex about the direction specified by a (unit) vector iV. A vector's coor­
dinates P' expressed in the new system are obtained from the coordinates P of the same 
vector in the original system using the following formula: 

P' = [(p-T).iV](1- cose)iV + (P-T)cose + [CP-T) xiV] sine. 

An easy way to render this formula into a program is to store the four arguments ?, T, 
iV, and ex as local variables, then evaluate an algebraic object matching the formula. 
This is not immediately possible, howevcr, since DOT and CROSS are not functions in 
the HP 48 sense. But we can fix that problem by creating user-defined functions (sec­
tion 8.5) as follows: 

DOTF DOT Funcrion 60EC 

leI'e! 2 leI'e! ] I lc'l'e! ] 

x y ~_f xl 
I <e< - A B 

>,« A B DOT » 

CROSSF CROSS Function 4732 

leI'cl2 In'cl ] I lewl] 

x y or xxy 

1

« - A B 
» « A B CROSS » 

With these two programs in hand, we can write the transformation program: 

XFORM Coordinate Transfonnation OD94 

lel'el .J level 3 level 2 In'ci ] I level ] 

p r N a IlJ p' 
« SWAP DUP ABS / Unit vector. 

4 ROLL 4 ROLL - PT = P-T. 
- 0: N PT Save the parameters as local variables. 

'DOTF(PT,N)*(1-COS(0:)) *N 
+ (PT) *COS(o:) +CROSSF(PT,N)*SIN(o:)' Evaluate transformation formula. 

» 

• Example. A coordinate system is translated a distance 3 in the direction specified by 

-311-



11.3 Arrays and Lists 

the spherical polar angles <!> = 30° and e = 60°, then rotated through 4SO about the z-axis. 
What are the coordinates of the vector [1 1 1 1 in the new system? 

• Solution. In this problem, P = [ 1 1 1 ], T = [3 '{30 '{60 ], IV = [0 0 1], and 
IX = 45°. Thus 

DEG 3 FIX [1 1 1 [3 '{30 '{60 1 [0 0 1 1 45 

XFORM u [-1.095 0.672 - .500 1 

11.4 Lists 

A list is a composite object (section 3.3) that contains an ordered sequence of other 
objects. Lists resemble vectors, in that they are both one-dimensional arrays of objects, 
and you can create either a list or a vector from a series of numbers (using ~LlST or 
~ARRY). The numbers in a vector, however, may be considered as the coordinates of a 
geometrical point, and hence are subject to various arithmetic operations and transfor­
mation rules. The clements of a list may be any types of objects, and do not necessarily 
have any particular association. 

The basic ideas of the use of the HP 4~ object stack carryover into the principles and 
applications of list objects. A list is like an auxiliary stack, in which you can store and 
retrieve an indefinite number of objects, with no restrictions on the order or type of 
objects in the list. To illustrate this point, try the following: 

1. Enter several objects of any types onto the stack. 

2. Now use the interactive stack to combine all of the stack objects into a list: 

(In a program, you can obtain the same result with DEPTH ~LlST.) Note that the 
objects are present in the list in the same order in which they were originally 
entered into the stack. The object that was in the highest stack level is the first 
clement in the list; the object that was in level 1 is the last element. The list thus 
preserves an image of the original stack. 

3. Save the list: 'OLD' ISIOI. The stack is now empty. 

4. Carry out any number of new calculations, leaving various objects on the stack. 
Discard these objects with CLEAR, then enter 

-312-

r 
.~ 

'( 

! 
I 
! 
I 
1 
j 

t 



Arrays and Lists 11.4 

OLD LIST ~ DROP. 

This restores the stack as it was after step 1. 

The ability to "freeze" a copy of the staek, store it away, then retrieve it later, is a useful 
list application in itself. But the main point of the example is to bring out the similari­
ties between the stack and a list object, which suggests how you might use lists. The 
stack provides a medium for the ordered presentation of objects as input arguments for 
procedures (built-in or user-created), and for receiving the result objects. Lists can be 
used for the same purposes, especially for cases where juggling mixtures of input, inter­
mediate, and output objects during the course of a calculation can become complicated. 

Lists are a valuable programming tool for any situation in whieh the number of objects 
with which a program has to deal is not specified at the time the program is written. 
When a program works with a definite number of objects, it is appropriate to store 
those objects in variables, or to manipulate them on the stack as individual objects. But 
when you don't know in advance how many objects are to be handled, the best approach 
by far is to manage the objects together in a list. We will give some examples of this 
concept in the next sections. 

The HP 4K provides a number of commands that enable you to manipulate lists and 
their clements. Some are the same as to those used for array operations; others are 
unique to lists. The list commands are distributed among several menus, as described in 
the next sections. 

11.4.1 Assembling Lists 
The basic commands for collecting objects into a list and taking a list apart are found in 
the program list menu ( iPRGi ",LISE ), along with the + function, which is on the key­
board: 

• To assemble objects into a list, use ~LlST. 

(1,2) 'A+B' 3 ~LlST U· {1 (1,2) 'A+B'}. 

Note that the level 1 argument of ~LlST (the 3 in this example) determines how 
many objects are taken from the stack to be combined into the list. 

• To combine the objeets from two lists into a single list (concatenation), use +: 

{1 2 3 4} {5 6 7 8} + L"'" {1 2 3 4 5 6 7 8}. 

+ will also add a stack object (that is not a list) to a list. If the list is the first 

-313-



11.4 Arrays and Lists 

argument, the second argument is appended to the list: 

{2 3 4} + u {2 3 4 1}. 

If the non-list object is first, it is prepended to the list: 

{2 3 4} + u {1 2 3 4}. 

This is similar to the concatenation of objects to a string (section 3.4.3.1), where a 
non-string object is automatically converted to a string. If + is applied to a string 
and a list together, precedence is given to the list operation: 

"123" {456} + Q] {"123" 456} 

To concatenate the string form of a list to another string, you must use ~STR on the 
list: 

"123" {456} ~STR + Q3· "123{ 456 }" 

There is also an ambiguity whcn both objects are lists, which is resolved by giving 
precedence to concatenation. Thus if you want to add a list itself as an object to 
another list, you must encapsulate the add-on list as the element in a single-object 
list: 

{1 2 3} {4 5 6} ~L1ST + iLT {1 2 3 {4 56}}. 

Since a list is an object, you can include lists within other lists. Notice the distinction 
between 

{1 23 4} {56 7 8} + Q] {1 234567 8} 

and 

{1 2 3 4} {5 6 7 8} 1 ~L1ST + [L,T {1 2 3 4 {5 6 7 8}}. 

• To take a list apart, use OBJ~, or the equivalent for lists, L1ST~. 

{1 (1,2) 'A+B'} OBJ~ u 1 (1,2) 'A+B' 3 

OBJ~ returns the elements of the list as separate stack objects, and leaves the 
number of elements in level 1. 

-314-



Arrays and Lists 11.4 

• To extract sublists from a list, use SUB. SUB takes a list plus two real number 
arguments that specify the positions in the list of the first and last element of the 
desired sublist: 

{A BCD E F G} 3 6 SUB ~T {C D E F}. 

See also TAIL, described in the next section. 

• To replace several consecutive objects in a list, use REPL. REPL takes three argu­
ments: the target list in level 3, the first substitution position in level 2, and the 
replacement list in level 1. The rules for use of REPL with lists are similar to those 
for use with strings (section 3.4.3.3). Assume that the target list contains 11 ele­
ments, the replacement list has 12 clements, and the ,ubstitution position is n. Then 
for 

II >/ 1, 

11+/2 -1>/ 1, 

n=O, 

the two lists are concatenated: 

{A BCD E} 10 {F G} REPL 
Q 2' {A BCD E F G} 

clements II through II are replaced, and the leftover 12 - (II - n ) 
objects from the end of the replacement list are concatenated, so 
that the result list has 11 + 12 - 1 elements: 

{A BCD} 4 {E F} REPL U' {A BeE F} 

elements II through n + 12 - 1 are replaced in the target list; the 
remaining II -/2 objects are unchanged: 

{A BCD} 2 {E F} REPL Q] {A E F D} 

the Bad Argument Value error is reported. 

11.4.2 List Element Commands 
The program list-element menu ( IPRGI ~LlSE ~ELEM~ ) contain commands for finding, 
extracting, and replacing individual elements in a list. 

• To pull an individual object out of a list, use GET or GETI (section 6.3.1). 

{1 (1,2) 'A+B'} 2 GET Q] (1,2). 

• HEAD extracts the first element of a list (like the LISP function CAR): 

{A BCD E F G} HEAD L'" A. 

-315-



11.4 Arrays and Lists 

HEAD is equivalent to 1 GET. It returns the Invalid Dimension error if the list is 
empty. 

• The counterpart of HEAD is TAIL, which returns the second-through-last elements of 
a list (like LISP CDR): 

{A BCD E F G} TAIL L~ {B C D E F G}. 

TAl L is equivalent to 

2 OVER SIZE SUB. 

It returns an empty list for lists with fewer than two elements. 

• To substitute an object into a list, use PUT or PUTI. 

{1 (1,2) 'A+B'} 2 "ABC" PUT LT {1 "ABC" 'A+B'}, 

where the second element (1,2) in the initial list is replaced with the string "ABC". 
PUTI makes a substitution like PUT, hut also leaves the index of the next clement in 
level 1. 

• You can find an object in a list by using POS: 

{A B C} 'B' POS H- 2. 

The number returned is the element number in the list of the search object, or 0 if 
the object is not contained in the list. 

• To determine the number of elements in a list, use SIZE. 

{1 (1,2) 'A+B'} SIZE U" 3. 

11.4.3 List Mathematics 
The math list menu (IMTHI ~LlSE ) contains commands that depend on the values of list 
elements, rather than treating them as generic objects. REVUST is also included, 
because of its association with SORT. 

• LUST computes the sum of the elements in a list: 

{A BCD E} LUST n 'A+B+C+D+E'. 

The objects in the list may be of any types that are suitable for addition by +. 

-316-

, 
I 
I 
I 
I 

I 
l 
I 



Arrays and Lists 11.4 

• ADD sums the corresponding elements in a pair of lists. It has the same actions as 
+ for all argument types except lists; applicd to lists, or to one list and one non-list 
object, ADD executes + on the elements of the lists in the same manner as 
automatic list processing: 

{1 2 A} {3 4 B} ADD QT {4 6 'A+B'}. 

'X' {A B C} ADD c:,- {'X+A' 'X+B' 'X+C'} 

ADD is included because + is defined for list concatenation (for compatihility with 
the HP 2~ and the HP 48S jSX) rather than for element arithmetic. 

• nLiST computes the product of the elements in a list: 

The ohjeets in the list may be of any types that are suitable for multiplication hy *. 
More general "stream processing" like that performed by LLiST and IILiST is avail­
able with the command STREAM (section 11.4.4.2). 

• L1L1ST computes the differences hetween successive pairs of elements in a list: 

{A BCD} IILiST ,F {'B-A' 'C-B' 'D-C'} 

The objects in the argument list may he of any types that arc suitable for suhtraction 
hy -. L1L1ST is a special case of the general sub list processing provided hy 
DOSUBS (section 11.4.4.1). 

• SORT rearranges the clements of a list to be in ascelldillg order, so that each cle­
ment is greater than or equal to the preceding element: 

{6 7 - 1 2} SORT Qj {-1 2 6 7} 

The objects in the list must all be the same type, but that may be any type that is 
suitable for non-symbolic comparison by < --real numbers, binary integers, strings, 
global or local names, or unit objects. Names are sorted by their text, in the same 
manner as strings. SORT will also handle a list of lists, where the inner lists arc 
sorted according to their first elements, which all must be of the same type. 

To sort a list's elements into descending order, you can use SORT REVLlST. For 
more flexible sorting, see the program GSORT listed in section 11.5.3. 

• REVLlST reverses the order of the elements in a list: 

-317-



11.4 Arrays and Lists 

{A BCD} REVLlST c;r {D C B A} 

11.4.4 Lists as Argument Sequences 
In section 3.5.5.1, we showed how commands that are not intrinsically designed to deal 
with list arguments are automatically applied to one or more lists representing 
sequences of arguments. The commands in the program list-procedure menu ( IPRGI 

~L1ST~ =PROC= ) allow you to extend list processing to other commands and programs, 
and to use list arguments in a variety of other ways. 

11.4.4.1 Applying Commands and Programs to Lists of Arguments 
DOLIST is the command form of automatic list processing, which allows you to use li~ts 

as argument sequences for any command or program. For example, you can duplicate 
the action of ADD like this: . 

{1 2 3} {4 56} «+» DOLlST;/ {5 7 g} 

Here the command + is "quoted" (section 3.iI) hy surrounding it with « », so that it 
can he entered into level I as an argument for DOLIST. (DOLIST will also work with + 
itself on the stack, hut it is usually easier to usc « + » rather than executing a 
sequence like { + } HEAD to get the + hy itself.) Since + requires two arguments, 
DOLIST in this case expects two lists of ohjects suitable for + to he in levels 2 and 3. 

In general, DOLIST uses as many list argumcnts (1-5) as thc level I command requires 
as its arguments. DOLIST executes the command repeatedly, once for each set of 
ohjects from the list, where each sct is one object from the samc position in each list 
presented in the same stack order as the lists themselves. Symholically, the action of 
DOLIST with a commandf of m arguments is as follows: 

{ 011 ... a 'n } .,. {am I ... omn} «f» 

DOLIST L"' {f(oll," .,om') f (0 In, ... ,omn) }, 

where 11 is the number of objects a'i in each list. The Invalid Dimension error IS 

reported if 11 is not the same for all of the argument lists. 

The results (if there are any) from the repeated executions of a comm"nd by DOLIST 
are left on the stack. After the final execution, the results are collected into a list and 
returned to level 1. More precisely, any objects on the stack additional to those there 
before DOLIST was executed (not counting the level 1 object and the argument lists) are 
returned in the result list. If no new results are returned, or if the stack has fewer 

-318-

l 
~' 

I 

t 
1 

I 
l 
1 

I 
j 
J 

I 



Arrays and Lists 11.4 

objects after DOLlST, no result list is returned: 

{1 2 3} «CF» DOLIST or 

If an error occurs during DOLIST execution that is caused by the object that DOLIST is 
applying to the list, any results from the execution up to that point are left on the stack. 
This differs from automatic list processing, where such results are removed from the 
stack as part of the error-handling process. 

DOLIST can determine the number of argument lists needed from the level 1 command 
itself, since all HP 4S commands include this information as part of their internal defini­
tions. This can not be done in general for a user program, except when the program 
has the structure of a user-defined function (section 8.5), where the number of argu­
ments is indicated by the number of local names immediately following the initial ~ 
DOLIST does therefore allow programs of this form; for example, 

{1 2 3} {4 56} {7 8 9} «~ abc 'a+b+c'» 

DOLIST LT {12 15 18}. 

The program in this example adds three arguments, so three list arguments arc 
required. The simple RPN program« + + » also adds three arguments, but substi­
tuting it in the above example causes DOLIST to fail (Invalid User Function), because 
DOLIST can not determine how many arguments the program requires. But DOLIST 
provides for this case as wcll, by accepting a real number argument in level 2 that soeci­
fies the number of arguments for the level 1 program: 

{1 2 3} {4 56} {7 8 9} 3 «+ +» DOLIST oJ {12 15 18}. 

As another example, add 5 to the square of each number in a list: 

{1 2 3} «sa 5 +» DOLIST u- {6 9 14} 

Or, add two objects and subtract a third: 

{A B} {C D} {E F} 3 «3 ROLLD + SWAP -» 

DOLIST u- {'A+C-E' 'B+D-F'}. 

You can also supply an argument-count number for DOLIST even when the level 1 
object is a command or a user-defined function program. In that case the specified 

-319-



11.4 Arrays and Lists 

number takes precedence over the automatically determined argument count. In any 
case, if the number is smaller than the number of arguments actually required by the 
level 1 object, DOLIST execution will consume additional objects from the stack beyond 
the argument lists; if it is larger, unused objects from the extra argument lists will 
appear in the result list. You can take advantage of this to perform certain list 
rearrangements--for example, to interleave the objects in two lists: 

{A B C} {D E F} 2 «» DOLIST DT {A 0 B E C F} 

Or, to replicate each element in a list: 

{A B C} « DUP» DOLIST Q J' {A A B B C C} 

«< DUP » is not usable without the level 2 number because DUP accepts lists as 
arguments in the ordinary way.) 

As a final variation, DOLIST allows the level one object to be the flame of a global or 
local variable that contains a program. This is consistent with the notion (section 4.6.1) 
that named programs act like commands. For example, you can determine the greatL:st 
common divisors of a seriL:s of pairs of numbL:rs, using the program GCD (from section 
9.5.2.2) by name: 

{616 583 672} {253 980 338} 2 'GCD' DOLIST U f {11 2 }. 

When DOLIST is used with a name but fails because the stored object is inappropriate, 
thL: argument recovery system will return the stored object to the stack rather than the 
name. 

11.4.4.2 Accumulations 
When DOLIST is applied to two or more lists of arguments, they are used "in parallel," 
because at each iteration, one argument is taken from each list. Another way to organ­
ize several arguments is as a serial stream in a single list. For example, LLIST adds the 
first two objects in a list, then adds each remaining object to the sum: 

{A BCD E} LLIST Q] 'A+B+C+D+E' 

The list may contain any types of objects that are suitable for addition with ordinary +. 

STREAM allows you to extend LLIST-style stream processing to any two-argument com­
mand or program. STREAM takes two arguments: a list of two or more objects in level 
2 and any object in level 1. It begins execution by placing the first two objects from the 

-320-

,j 

1 
I 
I 

i 

I 



Arrays and Lists 11.4 

list on the stack (the first in level 2), then executing the original level 1 object. The 
result of that operation is left on the stack, the next element from the list is pushed into 
levell, and the object is executed again. This process is repeated until no elements are 
left in the list (STREAM reports the Invalid Dimension error if the argument list con­
tains fewer than two elements). 

LUST is equivalent to the sequence« + » STREAM. Substituting - for + allows 
you to subtract values from a starting amount (like deducting withdrawal amounts from 
an initial bank balance): 

{200 25 10 25 16 35} «-» STREAM ~ r 89 

Another straightforward use of STREAM is to find the minimum or the maximum of a 
list of numhers: 

{1 5 2 7 -3} «MIN» STREAM tf -3 

{1 5 2 7 -3} «MAX» STREAM Cf 7. 

Using the program GCD (section 9.5.2.2), you can find the greatest common divisor of a 
set of numhers: 

{324 948 672 1068 24 84} 'GCD' STREAM :' 12. 

STREAM is nominally designed to work with commands and programs that use two 
arguments, hut it makes no attempt to check the level one argument for any particular 
structure. If there is an error during execution, the error display identifies the guilty 
command rather than STREAM. 

11.4.4_1 Operations on Sublists 
Another way to interpret a list of arguments is as a series of overlapping sub lists. This 
is what !:lUST does as it computes the differences between each consecutive pair of 
numbers in a list. You can perform general computations of this nature using 
DOSUBS. This command applies a second command or a program to all sublists of a 
specified length within an argument list, combining the results of each operation into 
result list. Here we use DOSUBS to apply - to each pair of numbers so that second of 
each pair of numbers is subtracted from the first: 

{1 4 9 16 25 36} «-» DOSUBS G" {-3 - 5 - 7 - 9 -11 

This is same as executing !:lUST except that the signs of the results are reversed. 

The size of each sublist is determined either by the level 1 object or by an optional level 
2 real number, following the same logic as that used by DOUST (section 11.4.4.1). That 

-321-



11.4 Arrays and Lists 

is, if the level one object is a command that takes from one through five argumcnts of 
specific types, a program containing exactly onc such command, or a program with 
user-defined function structure, then the sublists are as long as the number of argu­
ments required by the object. This example shows the computation of a "moving aver­
age" taking three elements at a time (with a 2 FIX display): 

{1 3 5 9 12 17 25 27 31 36} «- abc '(a+b+c)j3'» 

DOSUBS rr;r {3.00 5.67 8.67 12.67 18.00 23.00 27.67 31.33} 

The number of sublists of length 111 in a list of length n IS 1l-11l + 1, so there arc 
\0 - 3 + 1=8 objects in the example result list. 

As for DOLlST, when the level 1 argument is not suitahle for automatic argument count 
determination, you must supply a real numher in level 2 to specify the count. In this 
example, we compute the differences in the squares of a series of integers: 

{1 2 3 4 56} 2 «SO SWAP SO -» 

DOSUBS {3 5 7 9 11) 

Two additional commands arc availahle for more complicated sublist operations: NSUB 
and ENDSUB. These commands hehave as special variahle names, which, when 
evaluated during the execution of DOLlST, return suhlist positions within the argument 
list. NSUB returns the position of the active suhlist, i.e. the position of its first clement 
counted in the main list. ENDSUB returns the numher of the last suhlist, which is also 
the total numher of suhlists. The simple program EVENELS illustrates the usc of 
NSUB: 

EVENELS " .. ('1I-1I11llIhered List FlelllCIlIS 536F 

II?\'C! I I II?\'C! I 

{ list} u- {list' } 

«1 Sub lists of length I. 

« Program argument for DOSUBS. 
IF 'NSUB MOD 2' If sub list number is odd. 

THEN DROP then drop the element. 

END 
» 

DOSUBS Apply the program. 

» 

-322-

i 



Arrays and Lists 114 

The program operates on one-element sublists, returning only the even-numhered 
ohjects and discarding the odd-numhered ones: 

{A BCD E F} EVE NELS L'" {B D F} 

As another example, consider the approximation of a definite integral hy Simpson's rule: 

where the Xi are the endpoints of 11 regular subintervals of [a,bl (11 even). The program 
SIMPSON listed on the next page automates the application of Simpson's rule, where 
the function, a, band 11 arc supplied as stack arguments. SIMPSON uses SEQ (section 
9.5.1.5) to generate a list of Il + 1 sample points, DOLIST to compute the sample values 
hy applying the function to each sample point, DOSUBS to multiply the sample values 
hy 1,2, or 4, and finally, ~LlST (section 11.4.3) to add up the result. 

For example, to compute the integral 

III 

f-~-, 
II I+x 

with 100 suhintervals: 

«- x '1/(1 + x '"'2)' » 0 10 100 SIMPSON ,f 1.47112767417. 

This result differs in the eleventh place from the ideal result tan - 1(1 oy' 1.471127(,743. 

11.4.4.4 List Processing Errors 
Applying commands to lists of. arguments by automatic list processing (section 3.5.5.1) 
or by the list processing commands descrihed in the preceding sections ean generate any 
of the usual errors associated with the commands. In addition, however, there are cer­
tain errors associated with the list processing itself: 

• Invalid Dimension indicates that an argument list has an incorrect number of ele­
ments, either because the list is too short or because it does not match the length of 
other argument lists (DOLlST) . 

• Invalid User Function is reported by DOLIST or DOSUBS when a user program 
supplied as the level 1 argument, where no argument count is specified in level 2, 

-323-



11.4 Arrays and Lists 

SIMPSON Simpson's Rule Integration 42F5 

level 4 level 3 level 2 level I I level! 

function a b n IL. integral 

« ~ f a b n Store function, endpoints, inte\V3ls. 

« 'x' DUP a b ' (b-a)jn' EVAL SEQ Generate list of sample points. 

'f' DOLIST Compute list of sample values. 

« ~ y 

« CASE 

'NSUB= = 1 OR NSUB= =ENDSUB' First and last samples. 

THEN y END 

'NSUB MOD 2= =0' Even -numbered samples. 

THEN '4*y' EVAL END 

'2*y' EVAL Odd - numbered samples. 

END 
» 

:::"'. 

DOSUBS Compute the weighted f (x,) 

2L1ST Add up the terms. 

'(b-a)j(3*n)' EVAL * Multiply by (b -a)/3n. 

>'> 

» 

docs not have a user-defined function structure . 

• Wrong Argument Count is reported by DOLIST or DOSUBS when a command is 
supplied as the level 1 argument that does not accept 1-5 arguments of specific types, 
e.g. DUP, ROT, or ~LlST. 

11.5 Using Lists in Programs 
The discussion of lists so far has focused on operations on lists and their elements. In 
this section we will consider the uses of lists as program tools for collecting objects for 
input and output, and for managing intermediate results. 

11.5.1 Input Lists 
Certain HP 48 commands provide examples of the use of lists to combine several input 
objects into a single argument. There are two basic reasons for this approach: 

1. To provide flexibility along with unifonnity. For example, consider the command 
CON, which creates an array in which all elements have the same value. CON 

-324-

1 



Arrays and Lists 11.5 

requires two pieces of information: 1) the common value for the elements, and 2) 
the dimensions of the array. The first is easy; the value is specified by a real or 
complex number in level 1. The second is a little more difficult, since an array 
can either be a one-dimensional vector, or a two-dimensional matrix. The use of 
a list as the level 2 argument for CON allows CON to handle both matrices and 
vectors. If the level 2 list contains one number, CON creates a vector; if the list 
contains two numbers, CON creates a matrix. If the dimensions were not com­
bined into a list, there would have to be two versions of CON: one that takes two 
real numbers as arguments--the value and the vector dimension; and one that 
takes three numhers--the value and two matrix dimensions. 

2. To reduce the number of separate arguments. Many graphics commands such as 
GXOR (section 10.3.1), use either complex numhers or binary integers to specify 
pixel coordinates. If the binary integers were entered as separate arguments, then 
these commands would violate the usual HP 48 convention that any particular 
command uses the same number of arguments for each of its allowed argument 
type comhinations. Instead, each pair of hinary integers is combined as a list, to 
match one-for-one the uses of complex numbers. 

Of these two reasons, the first is the only one of significance as a model for the use of 
lists as input arguments for user programs. That is, lists are ideal for situations where 
you have an indefinite numher of inputs. An example of this is provided by the program 
MINL (section 12.3), which finds the minimum among a series of numbers in a list. The 
program is written for series of any length--it has only to execute SIZE on the input list 
to determine how many numbers it needs to compare. Furthermore, during its execu­
tion, the numbers remain in the list, except for when they are extracted one-hy-one from 
the list for the comparisons. Keeping track of that single list, which could be stored in a 
global or local variable if necessary, is much simpler than trying to maintain the series 
of numbers as separate stack objects. If you are not yet convinced of the utility of lists, 
try writing a version of MINL that uses no lists (or arrays). See also the recursive pro­
gram RMINL, in section 12.10. 

11.5.1.1 Index List Arguments 
Commands such as PUT and GET that use argument lists containing one or more real 
numbers also allow you to substitute other types of objects for the numbers. The substi­
tute objects must evaluate (by means of ~NUM) to real number values. In particular, 
this means you can use symbolic values (names or expressions), or even programs, 
rather than specific numerical values. For example, the sequence 

m «1 m SIZE 2 GET FOR n m {3 n} GET NEXT» 

-325-



11.5 Arrays and Lists 

returns in order all of the numbers from the third row of a matrix. This capability can 
lead to some convoluted executions when argument lists contain (directly or indirectly) 
programs that manipulate the stack. You can predict the execution in such cases as fol­
lows: 

I. Empty lists cause the Bad Argument Value error. 

2. Lists containing only real numbers go directly on to the computation part of the 
command. 

3. When a list contains clements other than real numbers: 

a. The stack depth (less the list) is recorded. 

b. Each non-real number list clement is evaluated numerically (~NUM). After 
each evaluation, if the resulting stack is empty, the error Too Few Argu­
ments is reported. If the resulting level 1 object is not a real number, the 
Bad Argument Type error is reported. 

c. If the stack depth has decreased, the Too Few Arguments is returned. Oth­
erwise, the new ohjects, plus any excess, are combined back into a list. 

d. The command execution is started over again with the new list. 

Command errors that occur during evaluation of procedures within the argument list 
identify the guilty command and return its arguments as usual. However, other errors 
that occur in step 2 do not identify any command. 

If a non-numeric list is used as the index argument for GETI or PUTI, the incremented 
index list is returned with real number indices. 

11.5.2 Output Lists 
.J ust as you can usc a list to combine an indefinite number of input objects into a single 
argument, you can usc a list to receive the multiple-object output of a program. This 
approach makes it easy to manipulate a program's output--either to save it in a variable, 
or to use it as the input for another program . 

• Example. For any integer II, compute the first fl + 1 terms Fn of the Fibonacci series. 
This series is defined as follows: 

F 0 = () 

Fl = 1 
Fn = Fn- 1 +Fn- 2 

·326-

! 
1 



Arrays and Lists 11.5 

FIB Fibonacci Series Generator ED29 

level] I level ] 

n if {() I f" } 

« { 0 1 } Start the list with F 0 and Fl. 

SWAP DUP 1 

IF > If n is ,; 2. quit. 

THEN 0 1 Initial values F".2 and F".I' 

3 4 ROLL 1 + From :1 to n .. 

START DUP ROT + F".2 + F".I· 

ROT OVER + Add F" to the output list. 

3 ROLLD I { ... F" } F,,·2 1'".1 I 
NEXT DROP2 

ELSE DROP 

END 
~~> 

11.5.3 Lists of Intermediate Results 
Wht.:n a program contains loop strudurt.:s, or is writtt.:n rt.:cursivdy, it is usually Ilt.:t.:t.:s­
sary to t.:nsurt.: that tht.: stack has tht.: samt.: configuration at t.:ach itt.:ration. A particularly 
cOllVt.:nit.:nt mt.:ans of at.:hit.:ving this is to ust.: a list as an auxiliary data stack, to hold an 
indt.:finite number of intermt.:diatt.: rt.:sults in a constant position on the stack. 

Tht.: program GSORT illustrates tht.: use of lists of intermediate results. The sorting 
dont.: by SORT (section 11.4.3) is always numerical or alphabeticaL GSORT orders a list 
of objects according to any comparison that you specify. To use GSORT, enter the 
unsorted list of objects, followed by a program test-program that represents a logical test. 
Test-program should work like this: 

ob ject 1 ob jecl2 test-program CI flag. 

Flag should be true if objectl is to precede object2, or false otherwise. GSORT sorts the 
list so that the sequence 

ob jectn ob jectn + 1 test -program 

will return a true flag for any two consecutive objects ob jectn and ob jectn + 1 111 the list 
(unless the order is ambiguous). 

GSORT uses a recursive algorithm that can be summarized as: 

-327-



11.5 Arrays and Lists 

I. Remove an object from the middle of the list and compare it to each of the 
remaining objects using test-program. Separate the remaining objects into two lists, 
one containing objects for which the test returned tme, and the other containing 
the objects for which the test was false. 

2. Sort the two lists using the same algorithm. 

3. Combine the results back into a single list, with the sorted tme objects first, fol­
lowed by the original middle object, then the sorted false objects. 

GSORT General-purpuse Son EFFC 

!I:\'el :} 11'l'C! 1 I 11'l'C/ 1 

{ lis! } « [cst ::-> iJ { lis! } 

« - test Save test program as test. 

« IF OUP SIZE 1 > If the list has fewer than 2 clements. just 

return. 

THEN OBJ- Put the objecb on the stack. 

OUP 2 / 1 + ROLL (iet the middle object. 

NEWOB - X Save the object as x. 

« { } { } Initialize "true" and "false" lists. 

2 4 ROLL Iterate I'll" n-I clements: 

START ROT (jet the next clement. 

IF OUP X test EVAL If test is true. 

THEN ROT t SWAP add clement to first list. 

ELSE + Othelwise. add clement to second list. 

END 

NEXT 

test GSORT Sort the first list. 

SWAP test GSORT Sort the second list. 

X + SWAP + Combine the lists. 

» 

END 

» 

» 

t NEWOB saves memory by separating x from the originallist. See section 11.6. 

-328-

f 

I 
I 



Arrays and Lists 11.5 

For real numbers, the combination« < » GSORT produces the same numerical ord­
ering as SORT. But with GSORT, you could also sort numbers according to their abso­
lute values: 

{-10 3 7 -5} «ABS SWAP ABS >>> GSORT IT {3 -5 7 -10 

Other examples: 

• To sort strings or lists in order of increasing length: 

«SIZE SWAP SIZE >>> GSORT 

• To sort complex numbers in order of increasing polar angle from 0° to 360°: 

« « ARG DUP 0 IF < THEN -1 ACOS 2 * + END » 

ROT OVER EVAL ROT ROT EVAL < » GSORT 

11.5.4 Lists As Procedures 
The ddinition of a list as a composite object contammg an ordered sequence of other 
objects applies equally well to program objects. However, a program is a procedure­
class object (section 3.5) that combines objects intended for sequential execution, wheres 
a list is a data-class object that collects objects intended to be data. This difference is 
reflected in the execution actions of the two types of objects: executing a program 
automatically executes the objects that make up the program, but executing a list merely 
returns the list to the stack. You would write a program to compute the squares of 
integers between 1 and 10: 

«1 1 0 FOR n n SO NEXT» 

But you would use a list to contain the ten results: 

{1 4 9 16 25 36 49 64 81 100} 

Lists are intentionally designed to allow access to their component objects. You can 
combine objects into a list, or you can take it apart into its separate objects. You can 
also extraet and replace individual objects within a list. By contrast, programs are nor­
mally only modified by manual editing in the command line. This makes it difficult for 
a program to create new program objects with any elements that are not fixed at the 
time the original program is created. To address this problem, evaluation of a list by 
EVAL treats a list as a procedure, and successively executes the elements in the list. 
Thus 

·329-



11.5 Arrays and Lists 

{1 2 3 + +} EVAL L~ 6. 

A good example of the benefit of this property of EVAL is the use of the directory list 
returned by PATH. The directory sequence could be returned as a program, since a 
common need is to execute the sequence in order to restore as current the directory at 
the end of the path. But because the path is represented as a list, you are able to access 
or modify its individual elements as well as execute the directory sequence. 

For purposes of list evaluation, you can include in a list most of the elements of pro­
grams. There are a few exceptions: 

• The local variable command ~ can not be used within a list. All other program 
structures are allowed. 

• Names and programs in a list can not be "quoted" (section 3.8). For example, 

{ « »} EV AL L'" 1 , 

compared with 

« « »» EVAL aT « » 

Similarly, names entered in lists are not quoted--if you enter a name with ' , quotes 
in a list, the quotes are not retained. Therefore, to prevent the execution of a name 
or a program in a list, you must embed it within another set of program delimiters, 
e.g. {« « 1 » » } or {« 'ABC' » }. 

• You can not single-step through a list. If you evaluate a list containing a HALT or 
PROMPT, execution will suspend at the appropriate place, but SST in this case is 
equivalent to CO NT. 

A list can be used as an argument for 1FT or IFTE (section 9.4.2). These are the only 
built-in commands other than EVAL that evaluate lists as procedures. 

11.6 Composite Objects and Memory 
There is a subtlety in the management of composite objects--lists, algebraic objects, and 
programs--that you should keep in mind when programming with these objects. When 
an object originates in a composite object, such as when GET extracts an object from a 
list, or when executing a program leaves an object from the program on the stack, the 
composite object remains in memory as long as any of its component objects remains on 
the stack or is otherwise in use. If the composite object itself is stored in a global or 

·330· 



Arrays and Lists 11.6 

port variable (or is part of a program or another list in a variable), this point is unim­
portant, since the memory used by the object is accounted for in the variable. However, 
if the composite object has not been stored, the memory it uses will not be recovered 
until it and any objects that have been extracted from it are removed from the stack. 
For the individual objects, "removed" means dropped, stored in a global or port variable 
(not a local variable), or combined into a vector or another list. 

To see this effect, disable the argument, stack, and command recovery systems so that 
they will use no memory, and execute 

50 FOR n n NEXT 50 ~LlST 

to create a list of 50 numbers. Now execute 50 GET, so that the number 50 (from the 
list) is left on the stack. Next, execute MEM to determine how much memory is avail­
able. Use SWAP DROP to drop the 50, then execute MEM again. Notice that the 
difference is 447.5 bytes--far more memory than you would expect to be recovered by 
dropping the single real number 50. The large difference between the successive MEM's 
actually arises because the removal of the 50 allowed the HP 48 to delete the copy of 
the list that it had been preserving. 

As mentioned above, you can "uncouple" an object from the list from which it came by 
either storing the object in a global variable, or by including it in another list (or an 
array, if the object is a number). An even simpler method is to execute NEWOB (NEW 
OBject). NEWOB may not appear to do anything, since the object it returns matches 
the original, but in fact NEWOB creates a new independent copy of an object that is 
disassociated from any other object. Using NEWOB in the GSORT program listed in 
section 11.5.3 enables that program to sort lists substantially larger than it could if 
NEWOB were omitted. 

One additional note: if you are dealing only with a collection of numbers (all real or all 
complex), you can often use a vector (or a matrix, if you want a rows-and-columns type 
of organization) to store the numbers, instead of a list. For storing more than a few 
numbers, a vector is more memory-efficient than a list, and you can perform many of 
the same operations to assemble and disassemble vectors as you can with lists. The 
main disadvantage of using a vector in place of a list is that there is no built-in com­
mand for adding (concatenating) numbers to vectors, or combining two vectors into a 
longer one. The following program provides list-like concatenation for vectors: 

-331-



11.6 Arrays and Lists 

ADDV Concatenate Vectors 9645 

lcvel'> lcvell I level 1 

x I I'ector I IL~ I vector' I 
I I'cctor I x IL' I I'cctor' I 

(x,y) I I'cctor I [L~ I vector' I 
I vector I (x,y) IL, I vector' I 
I vector I I vector' I U' I vector" I 

« 

« DUP TYPE Program to apply to both vectors. 

IF 1 -s Is the object a number" 

THEN 1 Then treat as a one-element vector. 

ELSE OBJ- OBJ- DROP For a vector. put its elements on the stack. 

END 
DUP 2 + ROLL (iet the object above the vector. 

» - S Store the program as a subroutine s. 

« SWAP s EVAL s EVAL Apply s to both vectors. 

+ Total number of elements. 

1 -LIST -ARRY Combine the numbers into the result vector. 

/> 

,.,. 

11.7 Symbolic Arrays 
HP 4~ array objects are designed for the efficient storage of real and complex numbers, 
and can not contain symbolic elements. Nevertheless, it is possihle to deal with sym­
bolic arrays on the HP 48 by using the more flexible list objects to represent the arrays. 
In this section, we will present several programs for symbolic array calculations, which 
also serve as examples of the use of lists and arrays, and other programming techniques. 
These programs obviously do not exhaust the subject of symholic array manipulations, 
but you can use them as a basis for developing additional programs. 

All of the programs follow the convention that a symbolic array is represented by a list 
of lists. An II X m array is represented as a list containing II m-element lists. For exam­
ple, the list {{ a b} {c d} { e f}} stands for the matrix 

I a b I 

1 ~ 11' 
There is no special provIsion for vectors, which may be represented as 1 X 11 or II X 1 
arrays in this system. Since all of the arrays are two-dimensional, we will always use two 

-332-



Arrays and Lists 11,7 

separate (i.e. not in a list) real numbers to specify elements or dimensions. 

The programs do not check for the integrity of the lisb you may enter--they presume 
that all of the inner lists in a particular symbolic array list have the same number of ele­
ments, that all of the elements are either names, numbers, or algebraic expressions, and 
that there are no extraneous elements in any of the lists. If the programs are applied to 
lists that violate any of these assumptions, they may error or return nonsensical results. 
If this is not satisfactory, you ean easily revise the programs to include more argument 
testing. 

11. 7.1 Utilities 
To start with, here are several utility programs for symbolic arrays that are analogous to 
various HP 48 array commands: 

DIM 

SA­

-SA 

N-S 

S-N 

APLY1 

APLY2 

STRN 

returns the dimensions Il ( rows) and 111 ( columns) of a symbolic array. 

unpacks a symbolic array into separate stack objects. 

combines stack objects into a symbolic array. 

converts an ordinary numerical array into a symbolic array. Vectors are con­
verted into Il X I symbolic arrays. 

attempts to evaluate all clements in a symbolic array into numbers. If suc­
cessful, it then converts the symbolic array into a numeric array. 

applies a program to each clement of a symbolic array. 

combines two symbolic arrays by applying a program to pairs of elements. 

transposes a symbolic array. 

DIM Symbulic Array Dimensions 9378 

l!!Vel ] I l!!Vel 2 level] 

{{ array }} U· n m 

I:: DUP SIZE SWAP HEAD SIZE 

-333-



11.7 Arrays and Lists 

SA- Symbolic AlTay to Stack 2802 

level 1 I level :2 level 1 

{{ alTay }} lt1 ... elcmcnrs.. 11 m 

« OBJ- OVER SIZE - n m Store dimensions. 

« 1 n 

FOR i 

'(i ~ 1)*m+n~i+ l' EVAL ROLL Get the ith row. 

OBJ- OROP Put its elements on the stack. 

NEXT 

n m Return the dimensions. 

» 

» 

-SA Stack /0 .\~Ylllb()lic Anay 98FO 

"Tel :2 In'C/ I I /n'C/ 1 

... clCI11cnts .. II III lt1 {{ alTay }} 

« - n m Save the dimensions. 

« 1 n 

FOR i 

m -LIST Make the ith row. 

'm*(n~i)+i' EVAL ROLLO Put it at the end. 

NEXT 

n -LIST Combine the rows. 
» 

» 

-334-



Arrays and Lists 

N-S Numeric to Symbolic B665 

level I level I 

[I array 11 {{ array }} 

« OBJ- OBJ- Put elements on the stack. 

Is this a vector') IF 1 

THEN 

END 

-SA 

Then add the other dimension. 

Combine into a symbolic array. 

S-N Symbolic 10 Numeric QAC1 

ICl'el I "'vel I 

{{ array}} [I array II 

« SA- Put elements on the stack. 

» 

DUP2 * - n m p Save dimensions and number of elements. 

Flag I clear will indicate a non-number. « 1 SF 

» 

1 P 

START P ROLL (jet the next element. 

IFERR DUP -NUM Convert it to a number. 

THEN DEPTH P - DROPN If -NUM fails, discard any partial results. 

1 CF Remember the failure. 

ELSE SWAP DROP 

IF DUP TYPE If the result is not a number. .. 

THEN 1 CF ... clear flag I. 

END 

END 

NEXT 

n m 

IF 1 

THEN 

ELSE 

END 

FC? 

-SA 

2 -LIST -ARRY 

Dimensions for result array. 

If there are non -numbers, return a symbolic 

array. 

Otherwise, return a numeric array. 

S-N sets flag I to indicate a successful conversion, and clears it otherwise. 

-335-

11.7 



11.7 Arrays and Lists 

APLY1 Apply Program 10 1 Symbolic Array DE29 

Icvcl2 level 1 I level 1 

{{ array }} « pro!,~'am » <-.- {{ array' }} 

« SWAP OBJ- Decompose the array into rows. 

DUP 2 + ROLL - n f Store the program and no. of rows. 

« 1 n 

FOR i 

1 f DOLIST Apply f to each row. 

n ROLL 

NEXT 

n -LIST Pack up the array. 
» 

» 

APLY2 Apply Program {() .' Sym/)()lic Arrays 83BB 

In-c/ 3 In'el .' In'el I I hwl J 

{{array Jl} {{array 2}} <~ pro;"rram » or {{amI}' 2}} 

« OVER SIZE - a1 a2 f n Save the arrays, the program, and 

the dimensions. 

« 1 n 

FOR i 

a1 i GET Get ilh row ofa1. 

a2 i GET Ciet illl row of a2. 

2 f DOLIST Execute the program. 

NEXT 

n -LIST Pack up the result array, 
» 

» 

-336-



Arrays and Lists 11.7 

STRN Transpose Symbolic AlTay A128 

l!!l'ci I I l!!l'e! I 

{{A'I }} 0.'- {{ AI' }} 

« DUP DIM - a n m Save array and dimensions. 

« 1 m 
FOR j 1 n 

FOR i a i GET j GET A'I 
NEXT 

NEXT Elements arc now in transposed order. 

m n 

Discard the original array. 

-SA Pack up the new array . 
.. 

11.7.2 Symbolic Array Arithmetic 
Using the APLY1 and APLY2 utilities listed in the preceding section, it is straightforward 
to create programs for simple symholic array arithmetic. 

SADD 

SSUB 

SMS 

SMUL 

adds two symholic arrays. 

suhtracts two symholic arrays. 

multiplies a symholic array hy a scalar (number, name, or algebraic). 

multiplies two symholic arrays. 

SADD Add Symbolic AlTays E3E4 

level .> l!!l'cl I I level I 

{{ A'I }} {{ B'I }} OJ {{ Ail + B'I }} 

I:: « 
+ COLCT » APL Y2 

SSU8 Subtract Symbolic AlTays 8782 

level :: l!!l,e! I I level I 

{{ Ail }} {{ B'I }} L'- {{ A'I -B,} }} 

1

« « 

» 

- COLCT » APL Y2 

-337-



11.7 Arrays and Lists 

You may wish to omit COLCT from SADD or SSUB, to speed up execution or to 
prevent an unwanted rearrangement. You can execute « COLCT » APL Y1 on an 
array to collect terms once after a series of calculations. 

SMS Scalar Multiply Symbolic A/Tays C58A 

level 2 level] I level] 

{{ A,} }} zt ax {{ zA'j }} 

zt {{ A,} }} aA" {{ zA ,} }} 

« IF DUP TYPE 5 = = Put the array in level 2. 

THEN SWAP 

END 
~ z Save the scalar. [< , * » Program for APL Y1. 

APLY1 
» 

» 

tz can be a numher. a name. or an algehraic expression. 

SMUL Multiply Symbolic A/Tays 12A9 

ir'1'ei .' /",'r/ ] I /n"C! ] 

{{ A,} }} {{ H,}}} or {{ (AB),} }} 

« DUP2 DIM ROT DIM 
~ a1 a2 n2 m2 n1 m1 Save the arrays and dimensions. 

« 1 n1 

FOR i 1 m2 

FOR j 0 1 m1 

FOR k Compute 2:,A'kBk}: 
k 

a1 i GET k GET A'k 

a2 k GET j GET Ak} 

* + 
NEXT 

NEXT 

m2 ~LlST Pack up the ith row. 

NEXT 

n1 ~LlST Pack up the result array. 
» 

» 

·338· 



Arrays and Lists 11.7 

11.7.3 Determinants and Characteristic Equations 
In this section, we develop a program DETM that computes the determinant of a sym­
bolic matrix from the formula 

DETA ± (_ly+l Ail A\, 
i=l 

where Aij is the ij cofactor (unsigned) of element A ii , and n is the number of rows or 
columns in the (square) matrix. This is a recursive form of the definition of DET, Sll1ce 
the cofactor of an element is the determinant of its minor: 

(NOll: that somc texthooks may give diffl:rent definitions for the terms minor and cofac­
tor. ) 

The programs to compute determinants of symholic matrices, SDET (.\ymholic deter­
minant), SCOF (~ymbolic cofactor), and SMINOR (~ymbolic minor), arc straightforward 
realizations of the ahovc definitions, including the recur,ion. They arc presented in an 
order (SDET first, SMINOR last) that demonstrates a "top-down" programming 
approach, where you write a program hefore writing the suhroutines that it calls. This 
kind of approach lets you concentrate on the essential main logic flow of a program, 
hefore worrying ahout the details. Also, when you com!: to write the suhroutines (the 
"details"), you know exactly what the stack usc of the subroutines should he. Note, 
however, that the opposite, "bottom-up" order is usually more convenient for actually 
entering the programs into the HP 4~. By entering the subroutines first, you can then 
enter their names into other programs hy pressing the appropriate VAR menu keys. 

SDET computes the determinant of a matrix as a sum along the first column, of cle­
ments times their respective signed cofactors. (The sign - Ii ~ 1 is computed explicitly in 
this program, rather than as part of the cofactor program, so that the row and column 
numbers that determine the sign don't have to be passed along down through all of the 
levels of recursion.) The unsigned cofactor of a matrix element is the determinant of 
the corresponding minor; for a 1 X 1 matrix, the cofactor is 1. The program SCOF 
called by SDET embodies these points. At the point in SDET where SCOF is executed, 
the stack contains a matrix and the row and column number of the desired cofactor. 

The two programs SDET and SCOF call each other back and forth--each is a subroutine 
of the other. The calculation proceeds the same way it would if you were computing the 
determinant by hand, where you use cofactors to compute the determinants and deter­
minants to compute cofactors. 

-339-



11.7 Arrays and Lists 

SDET Symbolic Determinant of a Matrix D39C 

level 1 I level] 

{{ matrix }} u- detemlinant 

« DUP DIM DROP ~ a n Save the matrix (a) and its dimen-

sion. 

« 0 Initialize the sum. 

1 n 

FOR i For each element in column 1... 

a i GET 1 GET Get the element. 

a i 1 SCOF * Multiply by the (unsigned) cofactor. 

-1 i 1 + - * Multiply by (_Iy+l 

+ Add to the current sum. 

NEXT 
» 

» 

SCOF (Unsi!,?lcd) Symbolic Cofactor 5785 

level 3 level 2 ICl'el 1 I level 1 

{{ matrix }} r c (tX cofactor 

« 3 PICK DIM DROP (iet the dimension of the matrix. 

IF 1 -- If it's a 1 x 1 matrix ... 

THEN 3 DROPN 1 ... then just return 1. 

ELSE SMINOR SDET ... else, return the determinant of the cofactor. 

END 
» 

SCOF uses a subprogram SMINOR to compute the nm minor of a symbolic matrix. It 
would be straightforward to modify the program MINOR in section 11.1.5 to work with 
symbolic matrices; however, because the structure we are using for symbolic arrays 
makes it easy to break an array into rows, we use a different approach and write SMI­
NOR as a single program. 

-340-



Arrays and Lists 11.7 

SMINOR Minor of a Symbolic Manix 0352 

Icvel 3 level 2 Icvel 1 I /(!Vel 1 

{{ manix }} r c (L$'" {{ minor}} 

« - r c Save the row and column number. 

« OBJ- Put the rows on the stack. 

OVER SIZE OVER 1 - - m n Save the (final) dimensions. 

« r - 1 + ROLL DROP Discard the rth row. 

1 n For each remaining row: 

START n ROLL (jet the ne,1 row. 

IF c 1 - r~ I is a special case. 

THEN DUP 1 c 1 - SUB Elements in columns < r. 

SWAP c 1 + m SUB Columns> r. 

+ New row. 

ELSE 2 m SUB r~ I case. 

END 

NEXT 

n -LIST Pack up the result. 
» 

» 

-~;. 

I

A BI 
• Example. Compute the determinant of the matrix C D I' 
• Solution. 

{{ A B}{ CD}} SDEl n ' A*D-C*B' 

You might note that for purely numeric matrices, SDEl can occasionally produce more 
accurate results than you obtain by applying the HP 48 command DEl to the same 
matrix. For example, applying SDEl to the matrix 

11 2 3 
14 5 6 
17 8 9 

returns 0, which is exactly correct, whereas using the command DEl returns 
2.14259999999E -1 O. This happens because SDEl actually carries out all of the matrix 
element multiplications explicitly, whereas, except for 2 X 2 matrices, DEl does not. 
DEl uses more advanced numerical methods to speed up calculation and minimize 
memory use for large matrices, and to insure a reliable answer even for matrices with 

·341· 



11.7 Arrays and Lists 

elements of widely varying values. 

An excellent application of the symbolic array capabilities presented here is the compu­
tation of the characteristic equation of a matrix, which is used in the determination of 
eigenvalues. The characteristic equation of a matrix A is defined as 

DET(A -xl) = 0, 

where x is an eigenvalue, and I is the identity matrix. The program CEQN returns the 
characteristic equation of a symbolic or numeric matrix, where you specify the matrix in 
level 2, and the name to be used for the eigenvalue variable in level 1. [Note: the 
sequence x n TAYLR is used in CEQN to simplify the result. You can omit this 
sequence for faster execution of CEQN, which will then return an equivalent but longer 
form of the equation.] 

CEQN Charactelistic Equation 1831 

In'Cl ] In'CIl I In'C! ] 

{{mallit}} 'name' or 'equaliun' 

IlmatlitJJ !lame 0, 'equation' 

<-<- IF OVER TYPE 5 * If it's a numeric matrix ... 

THEN SWAP N-S SWAP ... make it symbolic. 

END 

OVER SIZE - x n Save the name and dimension. 

« n ION Make an identity matrix. 

N-S Make it symbolic. 

x SMS Multiply by X 

SSUB Subtract from the original matrix. 

SOET Determinant 

x n TAYLR Simplity the expression. 

0 = Make into an equation. 

» 

» 

• Example. Find the characteristic equation in X of 1 ~ f ~ I· 

• Solution: 

[[ 1 0 2] [0 1 4] [0 1 2 II 'X' CEQN J"- '-2-X+4*X"2-6j3!*X"3=O'. 

-342-



12. Program Development 

Program development is the process of transforming a computation problem into a cal­
culator program. No two problems are identical, of course, but in this chapter we will 
consider certain elements that involve a common approach from program to program. 
Such elements include program techniques for obtaining input from a program's user 
and presenting the program's results in a manner that the user can interpret. There are 
also mechanical aspects such as editing, debugging and program optimization--altering a 
program to improve its speed or to minimize memory usc. In all of these matters there 
arc elements of art, and of personal preferences and style, that preclude any authorita­
tive prescription. It is not even easy to define what distinguishes a good program from a 
had one. For example, one program might require less memory, or run faster, or have 
fewer steps than another. But perhaps you can develop the less efficient program and 
usc it to obtain results in less time than it takes just to design the other; which, then, is 
the "hetter" program? 

In this chapter, we will study some general-purpose topics in HP 48 program develop­
ment, with examples to illustrate each topic. From these and other examples throughout 
this hook, you will sec how various HP 48 programming tools and techniques can he 
combined. You can remember those methods that appeal to you, and through practice, 
develop your own methodology. 

12.1 Program Editing 
To make any alteration to an existing program in order to correct an error, optllTIlZe 
execution, or add features, you must edit the program. Because HP 41\ programs arc 
objects, you edit a program the same way you edit any other object. That is, you usc 
EDIT to create a text version of the program in the command line, use the facilities of 
the command line to make the alterations you desire, then execute ENTER to replace 
the old copy of the program with the new one. Re-entering the entire program this way 
ensures that objects and program structures are entered correctly. Even if you develop 
or edit a program as text on a computer, as you transfer it to the HP 48 it is subjected 
to the same syntax checking as it would had it been entered into the command line. 

When an object is copied into the command line by EDIT, any numbers in the object are 
shown to their full precision, regardless of the current number display mode. That is, 
floating-point numbers are shown in STD format, and binary integers with a wordsize of 
64 bits. This prevents the accidental changing of numbers during editing. Also, binary 
integers are shown with an identifying character (b, d, h, or 0), so that reentering a 
binary integer will not change its base regardless of the current mode. 

-343-



12.1 Program Development 

The advantages of the HP 48 program editing approach are: 

• The same editing methods apply to all HP 48 object types, so that you don't have to 
learn special techniques for each object type. 

• No changes you make during an edit are "final" until you press IENTERI. If you 
change your mind while you are editing a program, you can just press [Qill to cancel 
the edit and leave the program intact. 

On the other hand, there are two important disadvantages: 

• For a large program, it can take a substantial amount of time for the HP 4K to 
translate the entire program object into its text form, and, when you're done editing, 
to build the new program from the command line text. 

• During the execution of ENTER, there must be memory availahle for as many as 
three versions of the program (the original, the command line text, and the new ver­
sion) simultaneously. This restricts the size of the program that can he edited. 

The latter disadvantage is the most serious, hecause it can happen that there isn't 
enough memory to permit any changes to an existing program, even if the changes don't 
increase thc final size of the program. Both disadvantages dictate that you keep pro­
grams small, typically less than 1000 hytes (the largest program in this hook is 
MSGSHOW in section 12.6.4.4, which is 1536.5 hytes). If a program starts to get too big 
as you develop it, break it up into smaller suhprograms that are executed by a short 
main program. Even though this costs a little more memory for the subprogram names 
and variahles, the smaller programs will be editable when a big single program is not. 

12.1.1 Low Memory Editing Strategies 
When the HP 4K runs out of memory as you try to enter an edited program (or any 
other object), you can use the following steps to increase the available memory: 

I. Remove any unwanted objects--c1ear the stack, kill any suspended programs (sec­
tion 12.2), and purge unneeded variables from user memory. 

2. Disable last arguments and stack recovery: @=lJIMODESI ~ MISC~ ~STKD~ ~ARGD'" _ 

3. Recall the object you want to edit to level I. If the object is stored in a variable, 
purge the variable to save the memory used for the variable. 

4. Press @=lJ I EDITI . 

5. Press -CMDD- ",CMD~ . This empties the command stack, but leaves command 
recovery enabled. 

-344-



Program Development 12.1 

6. Make your changes, and press IENTERI. If there still is insufficient memory, press 
~ ICMOI to return the object to the command line, -CMOo- to disable and clear 
the command stack, then IENTERI. This step is risky, because if there is still not 
enough room, you will have lost the edited version of the object. 

If the preceding steps fail, you can take the more drastic step of purging the object you 
are trying to edit. That is, 

I. With the object in level 1, press "CMO" to reactivate the command stack. 

2. Press [SJIEOITI to copy the object to the command line; make your changes. 

3. Press IENTERI. This will presumably fail due to insufficient memory. 

4. Press ~ to discard the object from level l. 

5. Pres, ~ ICMOI to recover the command line with the altered text version of the 
object. 

6. Try IENTERI again. If there is no error message, you're finished. But if ENTER 
fails again, then ... 

7. Press ~ ICMOI to retrieve the command line one more time. Now press =CMOo= 

10 disabk the command stack. Press IENTERI. If this fails, you'rc out of options, 
and out of luck--all copies of the object arc gone. (;enerally, however, this pro­
cess will succeed unkss you arc making major additions to the edited object. 

12.2 Starting and Stopping 
As we have discussed in previous sections, HP 4i1 programs arc highly structured, and 
each has only a singk entrance and exit. This fact makes starting and stopping an 
HP48 program a different proposition from the simple run/stop capability of ealCtllators 
that use a keystroke programming language. 

In the HP 48, a program that has stopped execution at some point but can be restarted 
from there is said to be suspended. This is different from a program that is terminated 
while running by [Qf[] , which abandons all pending execution in the currently executing 
program and cancels pending returns to any other programs that may have called that 
program. (In more precise terms, the return stack is cleared, and the normal stack 
display and keyboard are reactivated.) A program can suspend itself by including HALT 
or PROMPT in its definition, or you can suspend it manually by using the debug and 
single-step keys in the program control menu. For sake of illustration here we will con­
centrate on HALT, but the discussion generally applies to the other methods as well. 

When one or more programs are suspended by any means, the HALT annunciator IS 

-345-



12,2 Program Development 

displayed in the status area. The keyboard is activated, and all calculator operations 
work normally. The HP 48 can maintain this state indefinitely--it behaves as if you had 
started up another calculator "inside" the halted program. This suspended program 
environment has its own local memory with a new recovery stack that is independent of 
the usual recovery stack present before the suspended program was started. The calcu­
lator operates in the suspended environment until you execute CONT, whereupon the 
suspended program resumes execution at the point at which it was stopped. 

You can "nest" suspended program environments one within another without limit 
(other than available memory). While one program is halted, you can run another pro­
gram that is suspended in turn, with another local memory for a recovery stack, and so 
on. Each time you execute CONT, the latest suspended environment is deleted, includ­
ing its recovery stack. If you press ~ lUNDa I immediately after a program completes 
execution, the stack that was saved by the ENTER that started the program is restored. 
To demonstrate this, clear the stack, enter the following program and name it A: 

Then: 

« CLEAR 

Keystrokes: 

@:ilICLEARI 'X' 'V' 

IENTERI 2: 

AIENTERI 

1 : 

2: 
1 : 

2: 
1 : 

2: 
1 : 

4: 
3: 
2: 

2 HALT 3 4» 'A' STO 

Results: 

'X' 
'V' 

2 HALT annunciator is on. The 
program has put 1 and 2 on 
the stack, and halted. 

1 
2 ~IUNDOI restores the stack 

from prior to the previous 
CLEAR. 

2 
3 

-346-



Program Development 

1 : 

2: 
1 : 

4 The program A resumes, 
pushes 3 and 4 onto the 
stack, and is finished. 

'X' 
'y' Back to the original environ­

ment. 

12.2 

The last ENTER in the original environment was the one that started the program A. 
The final ~IUNDOI restored the stack as it was before that ENTER. 

Since the command line itself is a program, you can include a HALT or a PROMPT in 
the command line even if it is not explicitly contained in a program object delimited by 
« ». When you press IENTERI , the command line is executed up to the HALT or 
PROMPT. Then you can perform any normal operations; when you finally press t-Sl 

ICONTI , the rest of the suspended command line is executed. Among other uses, this 
provides an easy way to save a copy of the current stack while you carry out some unre­
lated calculations. With an empty command line, execute HALT IENTERI. You can now 
clear the stack and perform any other operations; afterwards you can restore the origi­
nal stack by pressing t-SlICONTI ~IUNDOI. 

Keep in mind when you're working with a suspended program that local variables 
created by the program may be present. For examplc, if a program halts whilc a local 
variable A that it created still exists, then executing the name A from the command line 
returns the value of that local variable, not the value of a global variable A that might 
also exist. (Pressing the ~ A ~ key in the VAR menu always executes the global name A 
regardless of any local variables that might exist.) 

12.2.1 CANCEL, DOERR and KILL 
The CANCEL operation ( I ON I ) is intended to let you "get the attention" of the calcu­
lator. Pressing it tells the calculator to stop what it is doing: stop all operations, pro­
cedures, etc., clear any special displays, reactivate the normal keyboard, and show the 
standard stack display. You also use the key to turn the calculator on, although that's 
almost a secondary role compared to the key's CANCEL role (labeling the key face with 
ON rather than CANCEL is primarily for the sake of people using the calculator for the 
first few times). 

CANCEL is a "gentle" interruption--global variables are unaffected, the stack is 
preserved, and the recovery stack, arguments and command lines are left intact. How­
ever, you can't resume execution of a program stopped by CANCEL because all of the 

-347-



12.2 Program Development 

subroutine returns associated with that program are cleared. This does not apply to 
suspended programs, which can be rcsumed by CONT after any number of CANCEL's 
or other errors. 

As discussed in section 9.6.1, CANCEL is treated as an error when [Q[J is pressed dur­
ing command execution, although there is no associated beep or message display. The 
error number is zero, and the error message (as returned by ERRM) is the empty string 
"". Accordingly, 0 DOERR is the programmable form of CANCEL. Executing 0 
DOERR in a program (or in the command line) acts as though I ON I were pressed at the 
point in the program where the DOERR appears. The program stops, and all pending 
returns to procedures that called that program are cleared. Like CANCEL , DOERR 
works in the current suspended program environment--if there arc any suspended pro­
grams, they are unaffected. You can use 0 DOERR in a program to terminate program 
execution early, when some situation is encountered that makes further execution point­
less. Usually this is done with an IF structure, such as 

IF situ atioll-is-h opeless THEN 0 DOERR END. 

Note that 0 DOERR, like CANCEL, clears special displays. If you want to abort a pro­
gram and return an explanatory message, you can use DOERR with a string argument 
(section 12.2.1). 

The only command that does affect suspended programs is KILL. KILL not only ter­
minates the current program like 0 DOERR docs, but also cancels all suspended pro­
grams and turns off the suspended program annunciator. All of the local memories 
associated with the suspended programs are removed. You can use KILL in a program, 
but that is a rather drastic thing to do, since in general a program doesn't "know" what 
programs arc suspended when it is executed. It is better to use 0 DOERR in a program, 
then execute KILL manually if needed. Your most frequent usc of KILL is likely to be to 
abort some half-finished program that you have been single-stepping, after you have 
found the problem you have been seeking. 

12.2.2 Single-Stepping 
The SST (single-step) operation is a combination of CONT and HALT that lets you exe­
cute a program one object at a time. Single-stepping is an important debugging tool, as 
it lets you follow the execution of a program step-by-step and discover where its calcula­
tions go awry. 

To understand the mechanics of single-stepping, picture it as the equivalent of pressing 
@:iJ ICONTI when a HALT is temporarily inserted immediately after the next object in the 
program. From this model it follows that a program must be suspended before you can 

-348-



Program Development 12.2 

single-step it. The easiest way to do this is to enter the program, or its name if it is 
stored in a global or local variable, into levelland then press -DBUG= (DeBUG), which 
is found in the program run menu ( IPRGIINXTI ~RUN~ ). DSUG begins to execute the 
programs, but suspends its execution before actually executing its first object. Then you 
can execute each successive object using ~SST~ . If instead you want to start single­
stepping farther along in a program, you must include a HALT or a PROMPT at the 
point where you want to start stepping. Then when you execute the program, the HALT 
suspends execution so that you can proceed with single steps. 

At each ~SST~ press, the HP 48 executes the next object in the suspended program, then 
halts and suspends the program again. To help you keep track of where you arc in the 
program, each object is displayed in display line 1 after it is executed. If you single-step 
the » that ends the suspended program, the program completes execution and the 
suspended program environment is cleared. You can also execute CONT, which 
resumes and completes normal program execution. 

A consequence of the behavior of SST as a one-step CONT is that each SST clears the 
current suspended program environment, then creates a new one after the step. This 
means that you can't cancel any stack effects of the object that was single-stepped by 
pressing ~IUNDOI--the recovery stack present before the SST is deleted by the SST. 

Some additional notes ahout SST: 

• An IFERR structure is treated as a single ohject by SST. That is, when you press 
~SST~ at an IFERR, the entire IFERR ... THEN ... ELSE ... END structure is executed. If 
an error occurs hetween IFERR and THEN, the theil-sequence between THEN and 
ELSE is executed; otherwise the else-sequence (if it is present) between ELSE and 
END is executed. The next ~SSE will single-step whatever object follows the END. 
If you want to step through individual parts of the IFERR structure, you must insert 
HALT (s) within the structure . 

• If a single-stepped object causes an error, the error is reported normally, but the 
single-step execution does not advance. If you press ~SST~ again, the HP 48 will 
attempt to execute the same object again. This give, you a chance to fix whatever it 
is that causes the error, such as a missing stack argument, then proceed with single­
stepping. 

12.3 Debugging 
Debugging is the art of finding and removing programming errors--"bugs." The process 
ranges from simple visual inspection of a program to look for obvious errors, through 
careful single-stepping of parts of a program to watch for incorrect results at each stage. 

-349-



12.3 Program Development 

Programming errors usually manifest themselves in two ways when you execute a pro­
gram: either the program halts due to an error, or the program completes execution but 
returns incorrect results (which may be due to an incorrect algorithm, rather than a pro­
gram defect). In either case, you know something is amiss--the trick is to find out 
where things go wrong in the program. 

A good debugging technique for any programming language is to write the program 
correctly in the first place. This sounds facetious, but chances are, if you take extra time 
in designing a program before entering it into the calculator, you will save time in the 
long run by reducing the amount of debugging time. For HP 48 programs, a good 
approach is to write out a program of any complexity on paper, or better yet on a per­
sonal computer using a text editor, with the program formatting conventions discussed 
in section 1.3. Most importantly, as you add steps to a program, include comments or 
simple stack contents listings at least every few steps. This will help you get the pro­
gram right in the first place; failing that, the comments stack listings will be your most 
valuable tool for debugging. 

When a program fails, the first step in finding errors is to verify that you have entered 
the program correctly. If you know the correct checksum for the program, you can use 
BYTES (section 12.5.1) to check that the actual program's checksum matches the correct 
value. If you don't know the checksum, or if thcre is a discrcpancy, thcn you should 
view the program using EDIT to see if it matches your program listing (this should hap­
pen automatically if you download the program from a computer file). If you have a 
printer, you can use PRVAR to print out a complete listing of the program. If these 
tests indicate that the program has been entered correctly, there must be a logical error 
in the program design. 

Before resorting to single-stepping, you may be able to apply the HP 48's symbolic capa­
bilities to find an error. That is, even when a program is designed for purely numerical 
calculation, you can execute the program with symbolic arguments, then compare the 
symbolic results with the intended program algorithms (this is a good thing to do to ver­
ify any numerical program, not just when you're explicitly looking for an error). 

For example, in section 12.4 we develop a program that finds the two roots of a qua­
dratic equation ax 2 + bx + C = 0, where the three coefficients a, band c are specified. 
The final version of the program is: 

-350-



Program Development 12.3 

au Quadratic Root Finder 18E8 

level 3 level.' level] I level.' level ] 

a b c U· XI x2 

« la b c I 
3 PICK / la b cia I 
SWAP ROT 2 * / NEG I cia -bl2a I 
DUP SO I cia -bl2a b 2/4a 2 I 
ROT - Y I -bl2a YICbl2a)2 -c la ] I 
DUP2 + I -bl2a YJ(bl2a)2- cla J XI I 
3 ROLLD - I XI x2 I 

» 

Because this program involves a lot of stack manipulations, it's easy to lose track of the 
program flow as you develop it. Suppose that when writing the program, you 
miscounted the number of stack objects, and entered SWAP in place of the 3 ROLLD at 
the end. If you execute the program with numerical values for the coefficients, you will 
obtain incorrect results--but no indication that they are wrong. To guard against this, 
you can verify the program by executing it with symbolic arguments 'A', 'B', and 'C' 
(purging those variables first, if necessary, to ensure symbolic calculations). With these 
arguments, the bad version of the program returns 

{ HOME} 

2: 
1 : 

By inspecting the level 1 result, you can see that the program correctly added the radical 
'Y(SQ(-(B/(A*2)))-C/A)' to '-B/(A*2)', but then subtracted the same radical from 
the sum in level 1 rather than from the other '- B / (A *2)' in level 2. This suggests that 
the error is a stack error near the end of the program, and it is then a simple matter to 
figure out that the SWAP should have been 3 ROLLD. 

The final resort in debugging is to single-step the program, from the beginning if 

-351-



12.3 Program Development 

necessary, until you discover an incorrect step. As described in section 12.2.2, in order 
to use SST, you must either use -DBUG- , to start single-stepping at the start of the pro­
gram, or you must include a HALT (or a PROMPT) in the program at the point where 
you want to start single-stepping. If you do the latter, remember to remove the HALT 
after you have found the program error. If you are sure you have the solution, 
remember to remove the HALT as you edit the program. Otherwise, you can leave it in 
until after you verify the new version. When the program halts, press [5J ICONTI to 
resume. 

In addition to -DBUG- and ~SST~ , the program control menu contains two other opera­
tions associated with single-stepping: 

• ~SSTj~ is a variation of ~SSE that you may use when you want to step through a 
named program that is heing used as a subroutine. That is, when the next ohject in 
a suspended program is the (global) name of a program, pressing ~SSTj~ is 
equivalent to executing OBUG on that program, so that you can then single-step 
through that program. While single-stepping the subprogram, [5J ICONTI at any time, 
or ~SST~ on the final », completes its execution so that subsequent single-stepping 
resumes in the original program. 

If you apply SST I to the name of a global variahle that docs not contain a program, 
the effect is the same as for SST, except that the SST I display shows the stored 
object instead of the name. For other object types, SST and SST I arc equivalent. 

• ~ NEXT~ previews the next single-step by displaying the next object in a suspended 
program in the top display line (rememher that the object displayed hy SST or SST! 
is the ohject that was executed last). Due to the intricacies of HP 4~ program execu­
tion, usually two ohjects are displayed if there is room on one line, hut in some case~ 
you will see only one object. (If the second object is a quoted name, you will sec 
only the leading quote. The quote is actually a separate object from the name, hut 
the two arc generally treated as a single object.) 

• Example. Find the error in the following program MINL. The program is designed to 
return the minimum value from a list of numbers. Starting with an initial value of 
MAXR, the program successively replaces the current value with the minimum (MIN) of 
the current value and the next number from the list. If you execute this program with a 
list of numbers, the program aborts with the Too Few Arguments error, identifying 
ROLLO as the culprit. To see what the correction should be, single-step through the 
program. 

·352-



Program Development 12.3 

MINL Minimum in a List (Had l'ersion) E7EB 

l!!l'e! ] I level] 

{ numbers} u- mininlum 

« MAXR -NUM SWAP DUP SIZE 

1 

DUP ROT 

START 

GETI 

4 ROLL MIN 4 ROLLD 

NEXT 

DROP2 
.", 

Key~tr()kes: Results: 

{ 1 23 } IVARI0 
'= MI.N-L~ ~ INXTI 

-'RON = =DBUG= 

1 : {1 2 3} The argument list. 

;SST= 2: 
1 : 

~SE (SWAP) "SST" 
(OUP) "SSE (SIZE) 3: 

"SSE (1) "SSE (OUP) 

2: 
1 : 

"SST" (ROT) 5: 
4: 
3: 
2: 
1 : 

"SST" (START) 3: 
2: 
1 : 

{1 2 3} 
9.99999999999E499 

9.99999999999E499 
{1 2 3} 

3 

9.99999999999E499 
{1 2 3} 

1 
1 
3 

9.99999999999E499 
{1 2 3} 

1 

-353-

Initial "minimum" value_ 

Number of clements in 
the list. 

Start value for GETI index_ 
Start value for START_ 
End value for START. 

Current minimum. 

Current GETI index. 



12.3 

~SST~ (GETI) 4: 
3: 
2: 
1 : 

Program Development 

9.99999999999E499 Current minimum. 
{1 2 3} 

2 New GETI index. 
First list element. 

~SST~ (4) ~SSE (ROLL) 4: 
3: 

{1 2 3} 
2 GETI index. 

~SST~ (MIN) 

2: 1 List element. 
1: 9.99999999999E499 Current minimum. 

3: 
2: 

{1 2 3} 
2 GETI index. 

1: New minimum. 

~SST~ (4) ~SST~ Too Few Arguments. 
(ROLLO) 

Here you can see exactly what is wrong. The program tries to execute 4 ROLLO with 
only three ohjects on the stack (attempting to put the ohjccts hack in the correct posi­
tions for the next iteration of the loop). The solution is to change the 4 ROLLO to 3 
ROLLO. Here's the correct program listing: 

MINL Minimlllll of a Ust (Good Vcrsion) 5BF7 

Icl'ci J I In'C! J 

{ nllll1hcrs } a, xmm 

« MAXR -NUM SWAP DUP SIZE I maxr {x, } n I 
1 Initialize m (list index). 

DUP ROT Loop from 1 to n. 

START Ixrrun{x,}ml 
GETI Xm 

4 ROLL MIN 3 ROLLD I xrrun {x, } m I 
NEXT 

DROP2 

» 

You can verify that this version works correctly by using a symbolic input. For example, 

{A B C} MINL u 'MIN(C,MIN(B,MIN(A,9.99999999999E499)))'. 

-354-



Program Development 12.3 

This program can be replaced by« MIN» STREAM (section 11.4.4.2), but it serves as 
a starting point for the recursive version developed in section 12.10. 

12.4 Program Optimization 
The fastest, most compact, and most memory efficient HP 48 programs are usually those 
that carry out all of their calculations on the stack, using no local or global variables, 
and only fine-tuned RPN sequences for mathematics. These programs arc also the 
hardest to write, since you have to keep track of the stack positions of everything, and 
spend time thinking about efficient ways to write the programs. 

In this section, we will illustrate the process of program optimization, the process of 
revising working programs so that they execute faster or more efficiently. In general, 
program optimization involves 

a. writing a first version of the program; 

b. replacing parts of the program with more efficient sequences; 

e. knowing when to stop optimizing and ust.: the current version. 

Thert.: is no fixed prescription for HP 48 program optimization. There arc two gt.:neral 
purpose approaches that apply in most situations: 

• Reduce the usc of variables by keeping more objects on the stack . 

• Replace long algebraic objects with RPN sequences that allow you to reuse inter­
mediate results. 

We will illustrate the application and effect of these two ideas in an extt.:nded program 
development example. Other methods arc apparent in the program examples in this 
chapter and elsewhere in the book . 

• Example. Develop and optimize a program au that computes both roots x of the 
quadratic equation ax2 + bx + C = 0, where the (numerical) coefficients a, b, and care 
supplied as stack arguments. The mathematical algorithm is 

x = 

Using local variables and algebraic objects, it is easy to translate the algorithm into a 
first version of the program. This version uses 151 bytes and takes .25 seconds to exe­
cute with arguments 8, - 3, and 2: 

-355-



12.4 

Version J: 

« 

- abc 
« '( -b+ v' (b~2-4*a'c))/(2*a)' EVAL 

'( -b- v' (b~2-4*a*c))/(2*a)' EVAL 

Program Development 

1 abc 1 

Name the arguments. 

xl 

X2 

To optimize this program, the first thing you might notice is that the solution algorithm 
can be written more compactly as 

x = -b'±~, 
where b' = b 12a and c' 
sion of the program: 

cia. You can incorporate this revised form into a new ver-

Version 2: 

« la b c 1 

- abc 
«'b/(2*a)' EVAL 'cia' EVAL - b c Store c' and I,'. 

« '-b+v'(b~2-c)' EVAL Xl 

'-b-v'(b~2-c)' EVAL x2 

Version 2 takes .23 seconds to execute, so compacting the algorithm has yielded a mod­
est speed improvement. However, version 2 is 162.5 bytes, 11.5 bytes larger than ver­
sion I--the extra local variable structure has cost more in program size than the algo­
rithm compaction saved. As the next step in optimization, you can eliminate that extra 
structure by computing b' and c' directly from the original stack arguments: 

Version 3: 

« 

» 

3 PICK I 
SWAP ROT 2 * I 
- c b 
« '-b+v'(b~2-c)' EVAL 

'-b-v'(b~2-c)' EVAL 
» 

la b c 1 

1 a b cia 1 

1 cia bl2a 1 

Store c' and b' . 

Version 3 occupies 118.5 bytes of RAM, which is 32.5 bytes smaller than version 1. It is 
also slightly faster (.21 seconds) than version 2. To improve on this version, you can 

-356-



Program Development 12.4 

observe that the two algebraic objects in the program are very similar, which means that 
the program performs some arithmetic twice. You should therefore be able to improve 
matters by breaking up the algebraic objects into smaller parts that are common to both 
expressions. 

Version 4: 

« 

3 PICK / 
SWAP ROT 2 * / 
- c b 
« '-b' 'V(bA 2-c)' DUP2 

+ EVAL 
3 ROLLD - EVAL 

» 

la b c 1 

1 a b cia 1 

1 cia bl2a 1 

Store c' and b'. 

Make 2 copies of the partial results. 
1 -b V(b 2 -c) xl 1 

X2 

Version 4 has shrunk the program size to 100 bytes, but execution has slowed to .2R 
seconds. The slowdown has resulted from a subtle cause: the final + and - that com­
bine the partial results are acting on symbolic arguments, returning symbolic results 
(which are then evaluated into the final numeric results using EVAL). Symbolic addition 
and subtraction are intrinsically slower than numeric arithmetic. You can fix this prob-

lem with a simple rearrangement so that the partial results '- b' and 'V (b A 2 - c)' are 
evaluated before they are added or subtracted: 

Version 5: 

3 PICK / 
SWAP ROT 2 * / 
- c b 
« '-b' EVAL 'V(b A 2-c)' 

EVAL DUP2 
+ 
3 ROLLD -

» 

la b c 1 

1 a b cia 1 

1 cia bl2a 1 

Store c' and b' . 

Make 2 copies of the partial results. 
1 -b V(b 2 -c) Xl 1 

X2 

Version 5 is the same size as version 4, but it executes III .14 seconds, which IS the 
fastest time yet. 

The progress made so far in optimizing this program suggests completing the process of 
converting the algebraic expressions into pure stack arithmetic, eliminating the use of 
variables. 

-357-



12.4 . Program Development 

Version 6 (final version): 

au Quadratic Root Finder 18E8 

level 3 level 2 level 1 1 
level 2 level 1 

a b c <-r Zj z2 

« la b c 1 

3 PICK / la b cia 1 

SWAP ROT 2 * / NEG 1 cia -bl2a 1 

DUP SO 1 cia -bl2a b 2/4a 2 
1 

ROT - Y 1 -bl2a YI(bI2a)2- cla 1 1 

DUP2 + 1 -bl2a Y[(b!2a)2-cla I X1 1 

3 ROLLD -
1 Xl X2 1 

» 

Version 6 requires only 57.5 bytes, and executes in .10 seconds. This represents a 62'/L 
reduction in program size, and a 2.5 x speed improvement over version I. 

The lesson here is not that algebraic objects evaluate numerically more slowly than their 
RPN sequence equivalents. The execution time difference between, for example, 
'1 + 2 + 3 + 4 + 5 + 6 + 7' EVAL and 1 2 + 3 + 4 + 5 + 6 + 7 +, is only a few 
milliseconds--the time required to put the algebraic object on the stack. Instead, the 
point is that RPN lets you avoid repeating mathematical operations by breaking calcula­
tions into unique elements, and then duplicating and reusing the results. Furthermore, 
it is always faster for a program to leave results on the stack rather than storing them in 
variables, and similarly faster to retrieve arguments from the stack than to recall them 
from variables. 

12.5 Memory Use 
To help you in optimizing programs for minimum memory size, Tables 12.1 and 12.2 list 
the memory size of various objects and structures included in a program. Table 12.1 
shows the memory occupied by program structures, not counting the objects that are 
entered between the structure words. Table 12.2 (next page) lists the memory size of 
individual objects. 

There are a few exceptions to the sizes listed in Table 12.2, since the HP 48 has built in 
certain commonly used objects, to save memory. For example, the real number 1 uses 
only 2.5 bytes, instead of the 10.5 bytes normally used by a real number. Similarly, each 
of the following built-in objects uses 2.5 bytes: 

-358-

1 



Program Development 12.5 

• Real integers from - 9 through + 9. 

• The real constants 3.14159265359 (TI), 2.71828182846 (e), 1E-499 (MINR), and 
9.99999999999E499 (MAXR). 

• The complex constant (0,1) (i). 

• The null string"". 

The entry for HP48SjSX commands refers to the fact that commands common inher­
ited from the HP48SjSX are stored by memory address and so occupy 2.5 bytes. Com­
mands new to the HP48CJjGX are represented by XLIB names, and use 5.5 bytes. 
U nlcss you are familiar with the HP 48S jSX, there is no particular way to know which 
type a particular command is. 

Table 12.1. Program Structure Sizes 

Stn/ClUre 

IF ... THEN ... * END 

IF '" THEN ... * ELSE ... * END 

IFERR ... * THEN ... * END 

IF/IFERR ... * THEN .. '* ELSE ... * END 

CASE ... THEN ... * END ... END 

(additional) THEN ... * END 

DO ... UNTIL ... END 

WHILE ... REPEAT ... * END 

START/FOR ... NEXT/STEP 

Sizc (bytcs) 

12.5t 

21lt 

17.5t 

25t 

20t 

lOt 
7.St 

12.5t 

5 

7.5 

7.5 

t A program savings of 5 bytes in each instance is obtained whenever any of the structure sequences marked 

with an asterisk ( ... * ) consists of one object. 

12.5.1 Using BYTES 
The easiest way to determine the memory size of an object is to execute BYTES with 
the object as its argument. BYTES returns (level 1) the actual memory size occupied by 
the object, plus a checksum (level 2). The checksum, a four-digit binary integer, is com­
puted essentially by adding up the object's memory bit pattern to produce a 16-bit 
number. The chance of two different objects having the same checksum is only 1 in 
65535, so the checksum provides an excellent test of the identity of two objects. This is 

-359-



12.5 Program Development 

Table 12.2. Object Sizes 

Object Type 

Real number 

Complex number 

String 

Vector 
Complex vector 

Matrix 

Complex matrix 

List 

Unquoted global or local name 
Ouoted global or local name 

Program 

Algebraic 

Binary Integer 

Graphics Object 

Tagged (lbject 

Cnit Object 

real magnitude 
each prefix 
each unit name 

each *. '. or / 
each exponent 

XLIB name 

Directory 

Backup Object 

Command 

HP48S/SX 
New to HP48G/GX 

Size (bytes) 

10.5 

18.5 

5 + number of charaClers 

12.5 + R x number of eiemel1ls 
12.5 + 1(, x numher of ciemel1ls 

15 + R x number of clemel1ls 

15 + 1(, x numher of eiemel1ls 

5 + included objecls 

1.5 + lIumher oj characters 
fl . ." + Ilumber of charaClers 

12.5 + included objcC/s 

5 + included objeCls 

10 + rows X CEIL(columns/8) 

3.5 + numher of lag characlers + ul1la!!);ed objecl 

7.5 +: 

2.5 or IO.S 
6 

5 + number of characrers 

2.5 
2.5 or 10.5 

5.5 

6.5 + included vatiables 

12 + number of name characters + included 
object 

2.5 
5.5 

-360-



Program Development 12.5 

most useful to verify that you have entered a program correctly according to a listing; it 
is easy to make an error that does not affect a program's size, hut any error is very 
likely to affect the checksum. 

BYTES treats global names slightly differently than other ohject types. Instead of 
returning the size and checksum of the name, BYTES computes those parameters for 
the object stored in the named global variable. Furthermore, the memory size returned 
is the total size of the variable, which includes the memory for the object itself, plus an 
additional amount for the variable structure. Specifically, the variable "overhead" is 4.5 
bytes plus one byte for each character in the variable name. The memory used hy a 
stored object is the same as the amount listed in Table 12.1, with one exception. Pro­
grams require 10 bytes (plus the included objects) rather than the 12.5 bytes listed in the 
tahle for programs within programs. 

12.6 Obtaining Input 
In programs and in manual operations, the stack is the hasic input/output mechanism. 
You can enter all the data a program needs as stack ohjects, execute the program, then 
read its results from the stack. This works fine under two conditions: first, you know in 
advance what objects to enter at the start, and second, there an; not so many inputs or 
outputs that you lose track of which is which among the stack objects. In the following 
sections we will consider several methods for improving on this hare-bones approach. 

12.6.1 Halting for Input 
The most flexihle method for obtaining input after a program has begun execution is to 
include a HALT or PROMPT in the program to suspend its execution (section 12.2). 
While the program is suspended, you have complete access to the calculator's resources, 
including the stack and variables. You can use those resources to calculate or otherwise 
produce the input. For example, if you want to enter Y3/2, you can compute it by any 
means you want, such as 'Y3/2' IEVAL! , rather than having to type in the digits of the 
number. You can store values in variables, set flags, or even run other programs to 
produce results that then become inputs for the suspended program. When you have 
entered those inputs by whatever means, you then press tsJ ICONTI to resume the 
suspended program. 

PROMPT suspends a program and displays a one- or two-line message in the status area 
(in the medium font). It is similar to 1 OISP 1 FREEZE HALT, with the important 
addition that the displayed message remains visible during command line entry instead 
of disappearing at the next keystroke as a FREEZE display does. PROMPT's display 
persists until the next ENTER (and all of the execution caused by the ENTER is com­
pleted), or until some other display operation replaces it. In particular, the prompt is 

-361-



12.6 Program Development 

visible during command line entry, which is convenient when you are typing in the input 
indicated by the prompt. 

• Example. The following sequence prompts successively for length, width, and height, 
as might be needed by a program that computes the volume of a box: 

"Enter length:" PROMPT "Enter width:" PROMPT "Enter height" PROMPT. 

Upon execution, the sequence halts and displays "Enter length". At this point, you 
enter a value for the length, and press @J] ICONTI. Then the display shows "Enter 
Width", and so on. Since PROMPT allows a two line message, the above sequence 
could be more specific by including "and press CONT" in the prompts. This suggests 
creating a general purpose input utility to save repeated entry of the same text: 

PROMPTCONT Prompt with CONT Display E4BD 

level 1 I level 1 

"text" IU· 

<<- "Enter" SWAP + Prepend "Enter" to the text. 

10 CHR + Add a newline. 

"and press CONT" + Append the second line. 

PROMPT Stop for input. 

» 

(Y ou could embed a newline directly in one or the other of the two strings in the pro­
gram, but using 10 CHR + instead makes program editing easier because you don't 
have to worry about invisible space characters at the end of a line). 

Using PROMPTCONT, the sequence to prompt for volume parameters becomes: 

"length" PROMPTCONT "width" PROMPTCONT "height" PROMPTCONT. 

PROMPTCONT fits the definition of a subroutine, which is a program that performs a 
task common to many programs but which doesn't have much value for manual execu­
tion. There are many ways to extend this subroutine to do even more standard input 
tasks. For example, a good program, after obtaining manual input, checks that input to 
verify that it is valid for the remainder of the program, and warns and reprompts you if 
it is not. The next program, CHKINPUT, demonstrates this process. 

·362· 

f 
1 



Program Development 12.6 

CHKINPUT Prompt and Check Input 2C9F 

level 2 level 1 I /t-vel 1 

"text" « lest » U" object 

« - prompt test Save the test program. 

« WHILE prompt PROMPTCONT Get the input. 

test EVAL NOT Exit if the input is valid. 

REPEAT 

"Invalid Input" 10 CHR + 
1 DISP Display error message. 

200 .3 BEEP .7 WAIT Beep and wait .7 seconds, then repeat. 

END 

» 

.» 

CHKINPUT requires two arguments: the first (level 2) is the prompt string as used by 
PROMPTCONT, and the second is a program to test the input. CHKINPUT does not 
finish until it can return a valid object as determined by the test program, which should 
take one object from the stack and return the object and tnle (1) if it is valid, and false 
(0) otherwise, For example, when prompting for box dimensions, you might want to 
accept only real numbers with values between 1 and 10, The test program then would 
look like this: 

«IF DEPTH 
THEN - object 
«IF object TYPE NOT 

THEN 
IF' object2: 1 AND object'S 10' 
THEN object 
ELSE 0 
END 

ELSE 0 
END 

ELSE 0 
END 

If the stack is not empty ... 
Save the object. 
If the object is a real number, 

and it is in the valid range, 
Then return the object and /me. 

Return false (out of range). 

Return false (not a real number). 

Return false (empty stack). 

CHKINPUT is an example of the use of a program as an argument, which is discussed in 
more detail in section 12.8. 

-363-



12.6 Program Development 

12.6.1.1 Verbose Prompts 
By definition, PROMPT is limited to two lines of prompt text, so that text can fit within 
the status area of the display. You can also use the stack area of the display for addi­
tional prompt text by preceding the execution of PROMPT with the use of DISP to 
display text in lines 3 - 7. In that case the status area text will remain until ENTER, but 
the stack area prompts will disappear at the next keystroke. 

For even more flexible prompt displays, you can use HALT instead of PROMPT, preced­
ing the HALT with any of the display commands described in Chapter 10, including 
FREEZE to preserve the special display when execution halts. The entire prompt 
display is replaced by the standard display at the next keystroke. 

The follow program is an example of an elaborate prompt intended to begin a tic-tac­
toe game program. Thc prompt mixes text, graphics, and a menu: 

« ERASE Clear the picture screen. 

PICT {# 10d #O} "Tic·Tac-Toe" 2 -GROB REPL 
PICT {#21 #8} "Instructions" 1 -GROB REPL 

Display text: 

PICT {#O #17d} "1. Choose"XXX"or"OOO" 1 -GROB REPL Carets "." here indicate 
space characters. 

PICT { #0 #25d} "2. Pre SSM PLAY" 1 -GROB REPL 
PICT { #0 #33d} "3. At XXX or 000 prompt," 1 -GROB REPL 
PICT { #0 #41d} "4. enter row·column," 1 -GROB 
PICT { #60d #49d} "then press""GO" 1 -GROB 

PICT { #73d #16d} DUP2 { #93d #22d} 
PICT { #37d #16d} DUP2 { #57d #22d} 
PICT { #35d #24d} DUP2 { #55d #30d} 
PICT { #107d #48d} DUP2 { #127d 

{ # 108d #27d} {# 108d #2d} LINE 
{#119d #27d} {#119d #2d} LINE 
{#126d #9d} {#101d #9d} LINE 
{#101d #19d} {#126d #19d} LINE 
{XXX 000 "" "" "" PLAY} TMENU 
PICT RCL ERASE -LCD 3 FREEZE 
HALT 

#54d} 

Executing the program produces this display: 

-364· 

SUB 
SUB 
SUB 

SUB 

REPL 
REPL 

NEG REPL 
NEG REPL 
NEG REPL 

NEG REPL 

Invert key lahels: 

Draw grid: 

Make temporary menu. 
Display the prompt. 



Program Development 

Tie-Tae-Toe 
INSTRUCTIONS 

1. CHOOSE ~ DR ~ 
2. PRESS 11m 
3. fiT :-::·a: DR 000 PROMPT, 
Ii. ENTER ROW-COLUMN, 

THEN PRESS IIffiII 
EGEII~ ___ 11m 

12.6.1.2 Prompting with Menus 

12.6 

The tic-tac-toe example above includes a temporary menu as as part of its prompt. 
Using a menu is a important enhancement to ordinary display prompting, since the 
menu labels themselves can act as instructions, and they remain visible indefinitely. 
Furthermore, a menu key can include a CaNT as part of its definition, so that pressing 
a menu key not only indicates a choice, but also resumes execution of a suspended pro­
gram, all in one operation. 

While you can use any built-in menu or the VAR or CST menus for prompting, a tem­
porary menu activated by TMENU is particularly useful for this purpose. A temporary 
menu has all of the flexibility of a custom menu, but does not replace the normal cus­
tom menu defined by the variable CST. The construction of menus by TMENU and 
MENU is described in section 7.3; here we will focus on the use of CaNT directly or 
indirectly in a custom menu. 

In the prompting examples so far, resuming a program suspended for input has required 
an explicit press of ~ ICONTI to resume execution after the input objects are entered. 
However, because CaNT is a programmable command, you can include it as part of a 
menu key definition and eliminate the need to press an additional key. Incorporating 
the continue operation into a menu is also a good practice because it allows you to 
focus entirely on the menu for instructions without having to think about how to resume 
a program. 

The tic-tac-toe prompt sequence displays a temporary menu defined by { XXX 000 }. 
Presumably XXX and 000 are the (global) names of subroutines that store the choice 
of whether you want to play X's or O's. Any easy way to record such information is 
with a flag; for example, XXX might name the program« 1 SF» and 000 is« 1 
CF ». But in this case there is no reason not to continue the main program as soon as 
XXX or 000 is executed, so XXX can be« 1 SF CONT » and 000 can be « 1 CF 
CaNT ». CaNT should always be the last object in such programs, since any objects 
following CaNT will never be executed. [Last object also means last in the sense that 

-365-



12.6 Program Development 

there are no pending returns to any other programs. When CO NT is executed, all 
currently executing programs are terminated, and the most recently suspended program 
is resumed.] 

Actually, you don't need global variables at all for the menu key subroutines, since the 
custom menu system (section 7.3.3) allows you to associate unnamed programs with 
menu keys. That is, the temporary menu list in the example might be: 

{ {"XXX" «1 SF CONT»} {"OOO" «1 CF CO NT » } } 

In many programs, you may wish to enter several quantities during the same program 
halt. In such cases, you might use separate menu keys for each item, then have a single 
menu key to resume the program. To return to the box dimensions example, the input 
sequence could look like this: 

"Enter length, width" 10 CHR + 
"and height, press GO" + 
{ {"LENG" «' L' STO»} 

{"WIDTH" «'W' STO»} 
{"HT" «'H' STO »} 

{"GO" CONT} 
} 
TMENU PROMPT 

Two-line prompt string. 
LENG key. 
WIDTH key. 
HT key. 
Blank key. 
GO key. 
End of temporary menu list. 
Activate the menu and halt. 

This method has the advantage that you can enter the input values in any order, and can 
re-enter a value if you change your mind. Only when you press:::: GO :::: are your current 
entries locked in. However, you may not wish to use global variables to hold the box 
dimensions; the following modification uses local variables during entry, then returns the 
three values to the stack before exiting: 

OOO-lwh 
« 

» 

"Enter length, width" 10 CHR + 
"and height, press GO" + 
{ {"LENG" «'I' STO»} 

{"WIDTH" «'w' STO»} 
{"HT" « 'h' STO »} 

{"GO" CONT} 
} 
TMENU PROMPT 

w h 

-366-

Initialize I, w, and h. 

Two-line prompt string. 
LENG key. 
WIDTH key. 
HT key. 
Blank key. 
GO key. 
End of temporary menu list. 
Activate the menu and halt. 
Return the parameters to the stack. 

I 

I 
j 
f 

I 
I 



Program Development 12.6 

12.6.2 Protected Entry 
An important advantage of suspending a program for input is that you can perform arbi­
trary operations while the program is suspended. However, in many situations this 
capability can actually be a disadvantage. Since you have access to the stack and 
memory, you can accidentally or deliberately alter or remove objects used by the pro­
gram. There is nowhere a program can save information that is completely "safe" while 
the program is suspended. The best recourse is to save objects in local variables with 
oftbeat names that are unlikely to be used inadvertently. For example, if all of a 
program's current parameters are on the stack, the following sequence protects them 
while the program is suspended: 

DEPTH ~LlST ~ {TTeWS «procedure» 

Procedure must contain both the prompt/input sequence and the stack rctrieval 
sequence (e.g. (TTaUS LIST ~ DROP). 

There arc two alternative means of obtaining input, in which the stack and other calcu­
lator resources are not accessible during entry: 

• Usc INPUT to restrict entry to the command line. 

• Use KEY to restrict entry to single keystrokes. 

We will examine these methods in the next two sections. 

12.6.3 Using INPUT 
INPUT is a special data entry command that activates the command line for entry. 
Further program execution is postponed, although the program is not suspended in the 
sense of HALT or PROMPT (in particular, pressing CQ.![] twice terminates the program). 
INPUT finishes, and automatically resumes program execution, when you press IENTERI ; 

since program entry mode (PRG) is turned on, IENTERI is the only option. The command 
line is not executed; instead its text content is returned as a string object for use by the 
remainder of the program. 

INPUT also provides the following features: 

• Optional multi-line text prompts. 

• The ability to "pre-load" the command line with objects to assist with entry. 

• Control over command line cursor type and position, and entry mode. 

• The choice of whether or not to use normal command line interpretation. 

-367-



12.6 Program Development 

You can select one or more of these options by means of the two arguments for INPUT, 
which may be either two strings, or a string (level 2) and a list. The string in level two 
specifies a prompt that appears in the medium font in the stack display area (starting in 
display line 3); this prompt persists during keystroke entry, untillENTERI terminates the 
INPUT operation. You can create a prompt of up to three 22-character lines, by includ­
ing one or two newline characters in the level 2 string. 

The level 1 argument can also be a string, which is used as the initial contents of the 
command line. For example, the following sequence prompts for a new value for a vari­
able X: 

"Enter X:" X STD -STR INPUT OBJ- 'X' STO 

Here we have used the current value of X as the initial contents of the command line. 
When the sequence is executed with 100 stored in X, the following display appears: 

FiAD PFiG 
{ HIlME } 

Enter- x: 

At this point, you can edit the current value, or press [Q[J to clear the command line 
and type a new value for X. (If you press I ON I again, or any time the command line is 
empty, the program is aborted.) Pressing IENTERI returns the contents of the command 
line to level 1 as a string object, and the program resumes execution with OBJ-. 

In the example, the command line initially contains the level 1 string argument, with the 
insert cursor ¢ at the end of the string; upon IENTERI , the command line string is pushed 
as is onto the stack. For additional control over the INPUT command line, you can use 
a list as the level 1 argument. The list can contain one or more elements (the order 
does not matter): 

• To specify the initial command line text, include a string object (if this is the only 
element, then you can use the string object by itself as in the preceding example). 
The string may contain newlines, to produce a multi-line entry. If no string is speci­
fied, the command line will initially be empty. 

-368-



Program Development 12.6 

• To place the cursor at a particular posItion in the command line, include a real 
integer to specify the character position, counting from the start of the command 
line (and including newlines in the count). Character number 0 specifies that the 
cursor is to be placed at the end of the command line (to the right of the last char­
acter). Alternatively, you can use a list {row column} that specifies the row (count­
ing from the top down) and column (counting from the left) position for the cursor. 
Column number () indicates that the cursor is to be placed at the end of the specified 
row; row 0 specifies the last row of the command line. If no cursor position is speci­
fied, the cursor will be placed at the end of the command line. 

You can also use the cursor position object to select replace entry mode, in which 
typed characters overwrite the characters at the cursor. This is done by entering a 
Ilegative charaeter or row number. Positive numbers specify the default insert mode. 

• To activate the command line in algebraic-program entry mode (ALG PRG), include 
the name ALG. 

• To activate alpha-lock, include the name ex. 

• Since the command line contents are returned to thc stack as a string, INPUT nor­
mally docs no syntax checking on the string following IENTERI. Howevcr, if you 
include the name V (for verify), thc sIring is checked for valid object syntax. If there 
is a syntax error, the HP 4X beeps and reactivates the command line with the 
highlighted error position, just as with ordinary command line entry. This is useful 
when you arc using INPUT to enter objects in their standard form, i.e. you follow 
INPUT with OBJ- to convert the result string to objects. If you don'! usc the V 
option and an entry has invalid object syntax, OBJ~ will error and abort the pro­
gram. The V option allows the HP 4/\ to catch such errors before the program 
resumes. 

Note that the symbols ex, ALG, and V are entered into the INPUT strings as name 
objects--without any delimiters. However, these names are not executed, so it doesn't 
matter if you have variables with those names . 

• Example. (In the following sequence, spaces within strings are marked by "A" charac­
ters for clarity.) 

-369-



12.6 

"Enter temperature 
'and pressure" 
{ ":Temp:' 

} 

:Press:'" 
{1 O} 
V 

INPUT 
OBJ~ 

Two-line prompt string. 

Initial command line text. 
Cursor at end of first line. 

Stop for input. 

Program Development 

Convert entered text into objects. 

Executing this sequence yields the following display: 

PFiG 
{ HOME} 

Ente~ tempe~atu~e 
and p~essu~e 

: TelYlp: • 
: Press: 
mmDnmlmlbilllnlJ1tmI 

The cursor is at the end of the first row, following the tag :Temp: that indicatcs that a 
temperature should be entered. After entering the temperature, pressing [jU moves the 
cursor to the second row, following the :Press: tag. For examplc, the keystrokes 

300_ ~IUNITSI INXT) ~TEMP~ ~ K ~ [jU 
100000_ ~)UNITS) )NXT) =PRESS= ~ PA ~ 

IENTER) 

return the tagged object :Temp:300_K to level 2, and :Press:100000_Pa to level 1. 
Here the primary purpose of the tags is to indicate the command line order of the 
entries; the fact that the resulting stack objects are tagged will not interfere with any 
subsequent program calculations. 

Unless you select the verify (V) option, INPUT does not require any structure or syntax 
for the text returned from the command line. This means, for example, that you can 
use INPUT to enter strings or names without quotes, binary integers without #'s etc. 
(see also section 7.4.1). The ~NEW~ keys in the PLOT, SOLVE, and STAT menus actu­
ally use INPUT to prompt for and enter names without requiring quotes. 

·370· 

r 



Program Development 12.6 

12.6.4 Keystroke Input 
All of the input methods outlined so far are designed for object entry, and permit 
multiple-keystroke entry while waiting for a particular key press (e.g. IENTERI or t5] 
ICONTI ) to resume program execution. The HP 48 also provides two commands for the 
entry of individual keystrokes--either where a single key or key combination automati­
cally resumes program execution, or without stopping program execution at all. 

12.6.4.1 KEY 
When you press an HP 48 key, a code representing that key is entered into a special 
memory location called the key buffer. Each time the HP 48 completes any operations in 
process, it checks the key buffer to see if any key codes were recorded while it was busy. 
If so, it removes the codes one at a time (in the same order in which they were 
pressed), then performs whatever operations are associated with the keys. This two­
stage key processing is responsible for the HP 48's "type-ahead" capability, whereby up 
to 15 keystrokes can be stored in the buffer while the busy annunciator is on. 

Programs can check and act on the contents of the key buffer by executing KEY. KEY 
attempts to remove the oldest key code from the key buffer. If there are codes in the 
buffer, KEY returns a two-digit real number key code rc to level 2 and a true flag (1) to 
level 1. The first digit r of the key code is the keyboard row of the key; c is the column. 
If there are no codes available in the key buffer, KEY returns only a false flag (0) to 
level 1, and no key code. Note that the key code does not include a key plane (shift) 
digit like that used by ASN (section 7.2.1) and WAIT (section 12.6.4.2); the shift keys act 
like any other keys in this case and return a two-digit code. 

By using KEY, programs can accept keyboard input, on a key-by-key basis, without actu­
ally halting execution. If a program is to pause indefinitely to wait for a keystroke, then 
o WAIT is a better choice than KEY, since during the execution of 0 WAIT the HP 48 is 
in a low power consumption state (and can even turn off after 10 minutes of inactivity). 
KEY is better suited for requirements such as these: 

• To provide for interrupting a long-running program in a manner that will let the 
program save enough information to restart at a later time . 

• To have a program wait for a key only for a fixed time, then continue whether or not 
a key is pressed. 

The first of these cases is illustrated by the program KEYHAl T. If you interrupt a pro­
gram with CANCEL ( I ON I ), the program stops immediately, with no chance to exit 
gracefully. You could embed the entire program in an IFERR structure that traps CAN­
CEL, but that still does not provide any information about the state of the program 
when it is interrupted. Instead, you might include (the name) KEYHAlT inside any 

-371-



12.6 Program Development 

time-consuming iterative loops in the program. Then, if you press any key other than 
[Q1[] while the program is running, KEYHAL T saves the current stack in a local variable 
and halts. To resume the program, you need only press @:iJ ~ . 

I KEY HAL THall if a Key is Pressed 5055 I 

«IF KEY 

THEN DEPTH -LIST - (T'rucr6 Save the stack. 

« "Program interrupted." 

10 CHR + 
"Press CONT to resume." + 

PROMPT 

crTCl.cr6 OBJ- DROP 

END 

First line of prompt. 

Add a newline. 

Second line of prompt. 

Suspend the program. 

Restore the stack 

The next program example, KEYTIME, waits a specified amount of time (specified in 
HH.MMSSSS format) for a keystroke. If one is detected, then the program returns the 
keycode and tme. If no key is pressed in the indicatc;d time interval, KEYTIME returns 
false. 

KEYTIME Wail a Specific Time for A Key 62BE 

level] I level 2 level ] 

hh.mmssss U' rc 1 

hh.mmssss U' 0 

« TIME - 8t t Save the time interval, start time. 

« WHILE TIME t HMS- 8t < Tme if elapsed time < Ot. 

IF KEY If a key was pressed, 

THEN SWAP DROP 1 0 then replace time flag with false, 

return true key flag. 

ELSE 0 SWAP Else, return false key flag. 

END 

REPEAT DROP Drop the key flag and try again. 

END 
» 

» 

-372-



Program Development 12.6 

12.6.4.2 WAIT 
The WAIT command nominally is designed to produce a simple pause in program execu­
tion. x WAIT produces a pause of x seconds, during which program execution does not 
proceed, but the display is not changed and no key entry is processed (the key buffer 
will still accumulate key codes). A common application of WAIT is to display messages 
or other pictures while a program is running. If your program shows a series of mes­
sages, you can put a WAIT after one or more of the display commands to ensure that 
the message remains visible long enough to be read conveniently. 

It is also possible to make WAIT pause program execution indefinitely, by using 0 or -1 
as its argument. For 0, the current display is not affected by WAIT; for -1, the menu 
labels are updated to reflect the current menu. In either case, execution resumes only 
when a key is pressed, when WAIT returns the corresponding key code to level 1. The 
key code returned by WAIT is a three-digit code rc.p like that used by ASN (section 
7.2.1), where r is the key row, c the column, and p the key plane. Note that 0 or -1 
WAIT only terminates when a "complete" key is entered, either a non-shift key by itself 
or such a key preceded by one or more shift keys. 

12.6.4.3 The CANCEL Key 
For the sake of KEY and WAIT (0 or -1 arguments), [QK] is not an ordinary key that 
returns a key code. Pressing I ON I always interrupts program execution, even if you have 
redefined this key and activated user mode. The only way for a program to treat [Qj[] 
as an ordinary key is to use an error trap that checks for error 0, and returns the key 
code 91 when that error occurs. An example of such processing is given in the program 
ASN41, in section 7.2.1.1. 

12.6.4.4 An INPUT Programming Example 
The program MSGSHOW listed below allows you to display all of the HP 48's built-in 
messages (except those associated with the equation library), both error messages and 
prompting text. The program itself is of limited practical value, but it does illustrate a 
number of programming techniques: 

• The use of WAIT to obtain single-keystroke input. 

• The use of INPUT to enter a hexadecimal number using a command line preloaded 
with the # and h delimiters. 

• An error trap to handle I ON I . 

• A CASE structure. 

• A temporary menu (section 7.3). 

-373-



12.6 Program Development 

• Extensive use of local variables. 

MSGSHOW starts with the following display: 

# lh 

Insufficient Memo~y 

This shows the message number and tl:xt of the first HP 4g ml:ssagl:, with a menu of 
l:hoil:l:s: 

• "NEXT" displays thl: nl:xt message. Thl: program wntains a list wntaining suhlists 
dl:fining thl: messagl: numher ranges for which therl: are valid messagl:S; if" NEXT" 

advanl:l:s past thl: l:nd of one of thl: rangl:S, it skips to the start of thl: nl:xt rangl:. At 
thl: last messagl: (#D04h), "NEXT" skips hack to ml:ssage 001. 

• ~ mOVl:S hal:kwards through thl: ml:ssagl:S, in thl: saml: mannn as "NEXT" . 

• -GOTO- allows you to skip dirl:ctly to any ml:ssage. It producl:s thl: following 
display: 

PFiG 
{ HOME} 

Ente~ Message Numbe~ 

Here you may enter any message number, followed by IENTERI. If the number is in an 
allowed range, the corresponding message is displayed; otherwise No Such Message 
is displayed briefly, and you are prompted for a new number. You can cancel the 
change by pressing I ON I to clear the command line, then IENTERI. 

• "QUIE exits from the program, and restores the original menu. 

-374-



Program Development 

I MSGSHOW Show Messages 

« RCLMENU HEX CLLCD 
{"NEXT" "PREV" "" "GOTO" "QUIT"} TMENU 
{{#1h #10h} {#101h #122h} {#124h #13Dh} 

{#201h #208h} {#301h #305h} 
{#501h #506h} {#601h #62Eh} 
{#A01h #A09h} {#B01h # B02h } 
{#C01h #C17h} {#D01h #D04h} 
DUP SIZE 1 0 - L nmax N exit 

«L 1 GET OBJ- DROP OVER - imin imax 
«DO I 

IFERR DOERR 
THEN ERRN 1 DISP ERRM 10 CHR + 

3 DISP 1 FREEZE 
END 
-1 WAIT - keycode 
<'- CASE 

'keycode ~ ~ 12.1 ' 
THEN 'I' 1 STO­

IF 'I<imin' 
THEN 

IF 'N~ ~1' 

THEN nmax 'N' STO 
ELSE 'N' 1 STO­
END L N GET OBJ-
DROP DUP 'I' STO 'imax' STO 
'imin' STO 

END 
END 
'keycode~ ~ 14.1' 
THEN 

WHILE "Enter Message Number" 
1 FREEZE {"#h" 2 V a} INPUT 
IF "" OVER SAME 
THEN DROP I N 0 
ELSE OBJ- - m 

«1 1 L SIZE 

» 

END 

FOR j L j GET OBJ- DROP 
IF m 2: SWAP m oS AND 
THEN DROP m j 0 99 

'j' STO 
END 

NEXT 

(continued on next page) 

-375-

Get current menu. 
Set temporal)' menu. 

12.6 

10871 

List of valid message numbers ranges. 

Save list, exi t flag. 
Initialize message number, limits. 
Start indefinite loop. 
Do the Ith error. 

Show the message. 

(iet a key. 
Actions for various keys: 
PREV key. 
Decrement I. 
Out of range') 

Then go to the ne.\.1 range. 
First range') 
Then go to the last. 
Otherwise decrement N. 

Reset the limits. 

GOTO key. 

Entl)' loop. 
Get a message number. 
If the command line is null. 
go back to the main loop. 
Otherwise, see if it's a valid number: 



12.6 

MSGSHOW continued from previous page: 

REPEAT "No Such Message" 
10 CHR + 1 DISP 300 .3 BEEP 

END 'N' STO 'I' STO L N GET 
OBJ- DROP 

'imax' STO 'imin' STO CLLCD 
END 
'keycode==16.1' THEN 1 'exit' STO END 
'keycode*11.1' THEN 300 .2 BEEP END 
'I' 1 STO+ 
IF 'I>imax' 
THEN 

IF 'N= =nmax' 
THEN 1 'N' STO 
ELSE 'N' 1 STO+ 
END L N GET OBJ- DROP 
OVER 'I' STO 'imax' STO 
'imin' STO 

END 
END 

UNTIL exit 
END 

MENU 

12.6.5 Custom Input Forms 

Program Development 

Invalid message; try again. 

Update counters and ranges. 

EXIT key. 
Beep unless NEXT key. 
Increment I. 
Out of range" 
then goto the next range. 
Last range') 
(iota the first range. 

Update counters. 

()uit if exit is true 

Restore original menu. 

The mechanism that the HP 48 uses for input forms (section 4.5) is availahle for pro­
gram usc as the command INFORM. With this command, you can create custom input 
forms with data fields, and all of the features of the huilt-in forms related to those 
fields, induding editing, defaults, reset values, and access to the stack environment from 
within the input forms. INFORM does not create choose fields or check fields, but you 
can make custom choose fields for use outside of input forms by using CHOOSE. 

To illustrate the use of CHOOSE, the program CALCS offers a choice of one of the 
special calculation environments for fractions and binary integers described in section 
7.4.1. The point of a program like this is to allow you to have a single menu key or key 
assignment that invokes a selection of individual programs. When you execute CALCS, 
it creates this display: 

-376-



Program Development 12.6 

F:fI[I 
{ HOME} 
4: SELECT CfllC T'iPE 

3: 
2: Fr-act ion::: 

B i nat":1..1 I nt e' er-::: 

1 : ____ mmD.naII 

You can then use the C2J or [ZJ key to make a selection. ~ OK ~ or IENTERI then activates 
the selected special calculator. If you press = CANCL= or [Qf[] , the display shows 

F:fI[I 
{ HOME} 

4: ICancelled 3: 
i). 
L.." 
1 : _____ .naII 

which for good measure also demonstrates the use of a message box (section 12.7.2). 

I CALCS Special Calculators 

« "SELECT CALC TYPE" 

{ { "Binary Integers" BINCALC} 

{"Fractions" FRACALC} 

} 1 

IF CHOOSE 

THEN EVAL 

ELSE "Cancelled" MSGBOX 

END 

CHOOSE requires three arguments: 

-377-

Choose box label. 

First choice. 

Second choice. 

Initial highlight. 

If a selection was made, 

then execute the selected object. 

Otherwise, show a message. 



12.6 Program Development 

• The choose box title, entered as a string object (level 3). 

• A list of "choices" (level 2). Each of the objects is displayed on one line of the 
choose box (using multiple pages if necessary). When ~ OK ~ is pressed, the 
currently highlighted object is returned to the stack. In many cases (such as in 
CALCS), it is preferable to show one object in the choose box but return another. 
For that purpose, any choice can be a list of two objects { label return }, where label 
is the object (usually a string) that is displayed, and return is the object. that IS 

returned if that choice is selected. 

• A real integer (level 1) that specifies which choice is initially highlighted. 

CHOOSE returns the selected object (level 2) and a true flag (1) if ~ OK ~ or IENTERI was 
pressed; or just false (0) if -CANCL- or [QN]. The flag allows a program to branch 
according to whether any choice was made; if it is true, then the returned object can be 
executed or otherwise processed. As shown in CALCS, it is appropriate to use 
CHOOSE as the if-clause in an IF structure (section 9.4.1): the then-clause is for use of 
the returned object, and the else-clause is for handling the cancellation of the choose 
box. 

An input form is a a sort of extended choose box, where you can make several choices 
and supply input objects that are not prearranged. Like CHOOSE, INFORM requires 
arguments that describe the subsequent screen display, and it returns a flag to level 1 to 
indicate whether the input form was exited via ~ OK ~ (true) or -CANCL- (false). If tnlC, 

then a list is also returned to level 2, containing result objects from the input form. 

In section 7.2.1.1, we list an interactive program ASN41 for making key assignments in 
the style of the old HP 41. The program ASN48G performs a similar task, this time 
using INFORM. ASN48G makes the following simple input form display: 

KEV: 

ENTER DEFINITIDN 1EII ___ mmoll!I3ll 

Here you enter a key assignment object into the DEF: field, and a keycode into the KEY: 

field. ~ OK ~ terminates the input form, and the program then completes by making the 

-378-



Program Development 12.6 

specified assignment. If you enter a keyeode, but leave the definition field blank (you 
can clear it with - RESET - ), the current assignment of the designated key is removed. A 
blank definition field and a keycode of a causes all current key assignments to be 
cleared. 

j ASN48G ASN llP48G Style 

« "KEY ASSIGNMENTS" 

{"DEF:" "ENTER DEFINITION" O} 

{ } 

Title. 

Definition field. 

Skip a line. 

{"KEY:" "ENTER KEYCODE RC.P" O} Key code field. 

{1 } 

{NOVAl NOVAl} 

{ } 

IF INFORM 

THEN OBJ- DROP - ob keyc 

« CASE 

End of field definitions 

One column. 

Reset to blanks 

Initial fields are blank. 

Show the input form. 

Store the parameters. 

FD5Cj 

keyc TYPE THEN END 

ob {NOVAl} HEAD SAME 

THEN keyc DElKEYS END 

ob keyc ASN 

Do nothing if keycode not a number. 

Is key object NOVAl" 

Then clear that key. 

Otherwise, make the assignment. 

END 

END 

The next example shows the use of a choose box as a preliminary for an input form. 
GENRANDS creates sets of random numbers using the programs listed in section 
12.11.1. It starts with this choose box: 

F1ft[J 
{ H 0 r:(:':":'H~D D~::::-::E~[J I:-::::~T F1:-:I~E: u:":":T:":'m::':N-:---..... 

4: UNIFORt1 
3: NORMAL 
2: POISSON 
1 : ____ tmmJI .. 

-379-



12.6 

GENRANDS Generate Random Numbers 

level 1 

[[ numbers II 
ILr 

« {"UNIFORM" "NORMAL" "POISSON"} 

"CHOOSE DISTRIBUTION" 

OVER 1 

IF CHOOSE 

THEN DUP "DISTRIBUTION" + 

3 ROllD POS - t 
« 

CASE 

't==1' THEN 

{ {"lOWER:" "ENTER lOWER LIMIT' O} {} 

{"UPPER:" "ENTER UPPER LIMIT" O} {} 

} {O 1) END 

Program Development 

Type strings. 

Choose box title. 

Highlight Uniform. 

Title for input form. 

Store the !}pe. 

Unifonn field parameters: 

AF8C 

't= =2' THEN Normal field parameters: 

{ {"MEAN:" "ENTER MEAN VALUE" O} {} 

{ "STD DEV:" "ENTER STANDARD DEVIATION" O} {} 

} {O 1) END 

{ {"MEAN:" "ENTER MEAN RATE" O} 

{ }} (1) Poisson field parameters. 

END 

DUP {10 LDAT NOVAl} + 

SWAP {10 NOVAl NOVAl} + ROT 

{ {"COUNT:" "ENTER NUMBER OF VALUES" O} {} 

{"NAME:" "ENTER VARIABLE NAME" 6} 

{"SEED:" "ENTER RANDOMIZE SEED" O} 

} + 3 ROllD 

{2 1) 3 ROllD 

IF INFORM 

THEN OBJ- DROP 

IF DUP TYPE NOT 

THEN RDZ 

ELSE DROP 

END 

(continued on next page) 

-380-

Resets for count. name. and seed. 

Defaults. 

Count field. 

Name field. 

Seed field. 

Two columns. 

If a seed was specified, 

then randomize. 



Program Development 

GENRANDS continued from previolls page: 

- c v 

« CASE 

't= =1' THEN OVER -

{RAND * +} + + END 

't= =2' THEN 'MNORM' 3 -LIST END 

{ POlS} + 
END 't' STO 

c START t EVAL NEXT 

c 1 2 -LIST -ARRY 

IF v TYPE 6 SAME 

THEN v STO 

END 

END 

ELSE DROP2 

END 

Save count and name. 

Vnifomz generator. 

Normal generator. 

Poisson generator. 

Replace type with generator. 

Generate the numbers. 

Pack up into an array. 

If a namc was supplied, 

store the array. 

Cancellcd choose box. 

12.6 

The choose hox choice specifics whether you want the random numhers to follow a uni­
form, normal, or Poisson distribution. When you press ~ OK ~ , you see an input form 
that allow you to specify parameters for the random number set. The input form for 
the uniform distribution looks like this: 

lIlEiEiI] UNIFORM DISTRIBUTION !I!:i]I!: 
LOI--.IER: 121 
UPPER: 1 
COUNT: 1121 
NAME: SEED: 

ENTER LOI--.IER LIMIT 1mI ___ mmJJlIIIaI 

Three fields are common to all three distribution types: 

• COUNT: specifies the number of elements n in the random number set to be gen­
erated. 

-381-



12.6 Program Development 

• NAME: specifies a namc for storing the set in a global variable. The set is rcturned as 
an n x 1 matrix. If no name is supplied, the matrix is returned to the stack. Using 
-RESET - on this field enters the name ::SDAT. 

• SEED: specifies a random number seed. You should use this field when you may 
want to repeat the creation of the same set later. If you leave the field blank, each 
new set will be different. 

For the uniform distribution, the fields LOWER: and UPPER specify the range over which 
you want the random numbers to be distributed. For the normal distribution, these 
fields arc replaced by MEAN: and STD DEV:, so that you can specify a normal distribution 
hy its mean and standard deviation. For Poisson distributions, only one field MEAN: is 
required. 

12.7 Displaying Output 
A nice intelligible display of a program's results is desirable for the same reasons that 
motivate input prompting. Furthermore, the methods of producing the text and graphics 
that show a result arc essentially the same as those for producing input displays. The 
program OLABEL (section 10.2) is a good general purpose utility for output labeling, 
but you can easily create more elaborate displays using the methods presented in 
Chapter 10 and the prcceding sections of this chapter. 

There are a few differences between input and output display methods that are worth 
noting: 

• Output display usually docs not require program suspension, so PROMPT is not a 
good way to display a result. Use DISP and FREEZE to display text that will remain 
in view after a program finishes. 

• You don't need FREEZE to show results while a program is executing. However, 
you should ensure that any display created while a program is running will persist 
long enough to be read. Use WAIT in cases where a display might be replaced too 
quickly. 

• When you want a program-ending display to be available after the next keystroke as 
provided by FREEZE, create the display on the picture screen instead of the text 
screen. You can still show the display at the end of a program using PVI EW and 
FREEZE, but after the picture disappears, you can view it again by pressing @] . 
Using the picture screen also lets you use all of the display (or more, if you create a 
large picture screen), whereas the menu area of the text screen is not available. 

-382-



Program Development 12.7 

12.7.1 Tagged Objects 
The tagged object type (section 3.4.8) provides a very useful method of output labeling 
that is especially useful for programs that are intended both as stand-alone programs 
and as subroutines. For the latter purpose, programs should return their results to the 
stack where they may be used for subsequent calculations. However, the bare presenta­
tion of objects on the stack is not a very helpful style for programs used manually, espe­
cially when a program returns two or more objects of the same type. One solution is to 
tag the output objects: the tags label the objects for visual identification, but do not 
interfere with the objects' use for further operations. 

The command LR is good illustration of using tagged objects for output. Both of LR's 
results are real numbers; unless you use LR frequently you will be hard pressed to 
remember which result is which without reference to a manual. Fortunately, you don't 
have to: the results are returned with the tags Intercept and Slope, clearly distinguishing 
the two. 

The program LCM&GCD listed below demonstrates the creation and use of tagged 
objects for output. The least-cammon-multiple (LCM) of two numbers is equal to their 
product divided by their greatest-cornman-divisor «(,CD). LCM&GCD calls the program 
GCD (section 9.5.2.2), then uses the result to compute the LCM, returning it and the 
(fCD as tagged objects. 

LCM&GCD LCM andGCD BODO 

level 2 level 1 I level 2 level 1 

x y U' GCD(x,y) LCM(x,y) 

« DUP2 * - p Save the product as p. 
« GCD Compute the GCD (section 9.5.2.2). 

"GCD" -TAG Tag the result. 
p OVER / Compute the LCM. 
"LCM" -TAG Tag the result. 
» 

» 

12.7.2 Message Boxes 
You can create custom message boxes similar to those that appear in input forms by 
using the MSGBOX command. MSGBOX's single argument is a text string object that 
represents the message. For example, 

"Now is the time for all good men to come to the aid of their party" MSGBOX 

makes this display: 

-383-



12.7 

~ADr-----------------~ 
{ HD Now is the time 
4: for- all good 
3: men to come to 
2: the aid of 
1: their- par-ty fill 

-----~ 

Program Development 

To resume execution, you must press ~ OK ~ or IENTERI. Note that the message box is 
15 characters wide, and that the argument string is automatically broken at spaces. You 
can also add newline characters if you want to change the automatic line break posi­
tions. The maximum length of the string is 75 characters, or 5 lines; longer strings are 
truncated to fit these limits. 

12.8 Programs as Arguments 
An unusual and powerful feature of the HP 4H is its ability to usc procedures as argu­
ments for commands and other procedures. This capability is clearly illustrated in HP4H 
symbolic algebra, where algebraic objects can be the arguments for functions. In this 
section, we will demonstrate the usc of programs as arguments. The fact that HP 4H 
programs are objects, and that therefore you can put an uncxecuted program on the 
stack, means that one program can transfer procedural information to another program 
as easily as it can transfer data. 

The program CHKINPUT presented in section 12.6.1 is a simple example of the use of a 
program as an argument. Any program that is used to specify a test for CHKINPUT 
could be included directly in the definition of CHKINPUT, but then the latter program 
would only be usable for the specific case determined by the test program. By leaving 
the test as an argument, CHKINPUT can be used as a general utility. 

As a more ambitious illustration of the use of programs as arguments, we will develop a 
program INFSUM to compute the sum 

L f (n), 
n =no 

where f (n) is an argument for INFSUM, not part of the program. That is, to use 
INFSUM, you enter no and a program representing f (n), as stack arguments. 

-384-

, 



Program Development 12.8 

The following is an example of program development, where you start with a single­
purpose program, and expand it in stages to a more general case. The program SUM4 
shown below serves as an example of a single-purpose program. It computes the 
specific sum 

1 
2: 4 

n=IIl 

SUM4 accumulates terms until successive sums are equal, i.e. additional terms are less 
than 10 - 12 of the current total. It returns the result 1.08232323295. 

SUM4 Slim l/n.t CE09 

I l!'."cl 1 

U" sum 

<eo. 0 Initialize sum. 

1 Starting value of n. 

DO I slIm(n) nl 
DUP -4 

, I Slim (n) n n 4 I 
SWAP 1 + Increment n. 

ROT ROT OVER + In + I SlIm (n) SlIm (n + I) I 
DUP 4 ROLLD I slim (11 + I) n 511111 (n) sLlm(n + I) I 

UNTIL - - Keep going until sum (n + I) == Slim (n l. 
END DROP Drop n. 

» 

In reviewing SUM4, you can observe that the sequence -4 A is the only part of SUM4 
that is specific to the particular sum LIl - 4. The rest of the program just handles the 
mechanics of adding successive terms and deciding when to stop. You can make the 

program work for any sum 'i,f (11) by replacing - 4 A in the fourth line of the program 
with the name TERM. The variable TERM should contain a program that computes 
f(Il), where 11 is provided in level 1. The summation program becomes: 

-385-



12.8 Program Development 

SUMTERM Compute an Infinite Sum from lERM E3BC 

1 
levell 

a1 sum 

« 0 Initialize sum. 

1 Starting value of Il. 

DO 1 sum(ll) Il 

DUP TERM 1 sum (Il) Il fen) 1 

SWAP 1 + Increment n. 

ROT ROT OVER + In+1 sum (n) sum(1l + I) 1 

DUP 4 ROLLD 1 sum(1l + I) Il sum (n) sum(Il+I) 1 

UNTIL - - Keep going until sum (n + I) = = sum (n). 

END DROP Drop Il. 

>~ 

To compute 2.11 -4 with SUMTERM: 

«-4 A» 'TERM' STO SUMTERM ~T 1.08232323295. 

Actually, the usc of the variable TERM is an unnecessary contrivance. The need is to 
supply SUMTERM with the information of how to compute J(n}--but that information, 

which is represented by the program« -4 A», can just as well be supplied as a 
stack argument. To sec how, omit the 'TERM' STO from the preceding sequence. 
Then, at the point where TERM is ahout to he executed in SUMTERM, the stack looks 
like this: 

4: « -4 A» 

3: sum (n) 
2: n 
1 : 11 

Thus, the effect of executing TERM (evaluating J (n » can be achieved by the sequence 4 
PICK EVAL. The program INFSUM (listed on the next page) makes that replacement, 
and to generalize further, makes the initial index 11 0 an input argument as well. 

00 2 

• Example. Use INFSUM to compute the sum ~ ~. 
n =1 2

n 

In this case, the program argument is « 
sum can be obtained with 

-386-

n 'n"'2j(2"'n), », and 110 1. So the 



Program Development 

«~ n 'n"'2j2"'n'» INFSUM n 5.99999999999. 

Or equivalently, but with faster execution, 

«DUP SO 2 ROT 

INFSUM 

SWAP 

DO 

DUP 4 PICK EVAL 

SWAP 1 + 

ROT ROT OVER + 
DUP 4 ROLLD 

UNTIL 

END ROT DROP2 

j» INFSUM IT 5.99999999999. 

Compute an Infinite Sum 

i!!l'ei 1 

« tcnl1 » no U" 

Initialize sum. 

Iproe. SlIl1I(ll) II I 

I I'roc. SlIl1I (n) n ( (n) I 

Increment n. 

i!!l'ci I 

sum 

I proe. n + 1 SlIl1I (n) slim (n + 1) I 

6840 

I prue. slim (n + 1) n slIIn (n) Slim (n + 1) I 

Keep going until SlIl1I (n + 1)= =sum (n). 

Discard n and procedure. 

The argument <.< lC/1II » must have the logical form « ~ n 'teml (n)' ». 

MINFSUM COl1lplllC an Infinite SUI1l (Monitor) BD3B 

« 0 

SWAP 

DO 

DUP 4 PICK EVAL 

SWAP 1 + 
ROT ROT OVER + 
DUP 1 DISP 

DUP 4 ROLLD 

UNTIL = = 

END ROT DROP2 

in'Cl I 

« lcnll :..--> no 

Initialize sum. 

I proe. 

Iproc. 

sllm(n) n 

slIm(n) n 

Increment n. 

U" sunz 

f (n) I 

Iproc. n+l sum(n) sllm(n+l) I 
Display the running sum. 

Iproc. SUlll (n + 1) n sum (n) sum (n + 1) I 

Keep going until sum (n + 1)= =SlIl1l (n). 

Discord n and procedure. 

The argument« teml » must have the logical form « ~ n 'term (n)' ». 

-387-

12.8 



12.8 Program Development 

INFSUM may run for a considerable amount of time if the sum converges slowly. For 
f (n) = n - 4, it takes 670 terms to compute the result 1.08232323295, which is accurate 
to the tenth decimal place (the correct value is 1.08232323371). The program will take 
correspondingly longer for sums that converge more slowly than this. We therefore list 
a second version, MINFSUM, that you can use instead of INFSUM when you want to 
monitor the sum as it accumulates. 

Additional variations of INFSUM are discussed in section 12.11.5. 

12.9 Timing Execution 
Minimizing execution time is an important aspect of program development and optimi­
zation. It is straightforward to use the HP 48 system clock to time program execution; 
the best way is to create a general purpose timer program that takes an object (such as 
a program) as an argument, executes the object, then returns the execution time. The 
program TIMED listed below illustrates this method; it returns the execution time of any 
object, in seconds. The object may either be in level 1 or stored in a variable specified 
by a name in level 1 (that is, if the level 1 object is a name, it is replaced by the con­
tents of the corresponding variable). TIMED was used to determine the various execu­
tion times listed in this book. 

TIMED '!lmed Execution 2403 

h~'cl 1 I level 1 

object ax time 

nanu! U' {illlf' 

« IF DUP TYPE 6 - - If the object is a name, 

THEN RCL then replace the name with the stored object. 

END MEM Pack memOlY 

RCWS 64 STWS - t w Set maximum wordsize. 

« TICKS 't' STO Save the start time. 

EVAL Evaluate the object. 

TICKS t - Compute the elapsed time in ticks. 

B-R 8192 / Convert to decimal seconds. 

. 0085 - w STWS Correct for local store, restore wordsize . 
» 

» 

TI MED uses TICKS, which returns the current system time as a binary integer in HP 48 
clock "ticks," which are equivalent to 1/8192 second. The correction factor of .0085 

-388-

I 



Program Development 12.9 

seconds at the end of the program compensates for the time used to store the first time 
value in the local variable t, between the two executions of TICKS. This number may 
vary slightly from calculator to calculator; you can adjust the value used in your calcula­
tor by timing the execution of the object 1. Within the resolution of the system clock, 
executing 1 takes essentially zero time, so adjust the correction factor if necessary to 
make 1 TIMED return 0.000 . 

• Example. How long does it take an HP 48CiX to invert a 7 X 7 identity matrix? 

7 IDN «INV» TIMED u 1.28. 

The answer is 1.28 seconds. 

TIMED executes MEM not to determine available memory, but to force memory packing 
(scc the next section) so that subsequent packing that might interfere with execution 
timing is postponed as long as possihle. The value returned by MEM is only used as a 
dummy ohject for the creation of the local variahle t. 

12.9.1 Erratic Execution 
You have prohably noticed that HP 48 execution, in everything from keystroke entry to 
user program execution, docs not always proceed smoothly but is frequently interrupted 
by momentary pauses. This is quite noticeahle in plotting, for example, where the 
orderly plotting of points is broken by periodic pauses as if the calculator were "catching 
its breath." This erratic execution is normal behavior for the HP 48, and should not 
concern you except to keep it in mind when you are timing program execution. Two 
consecutive identical operations may take quite different times to execute. 

During the course of operations, the HP 48 creates dozens or even hundreds of ~'tem­
porary objects." These are the objects that you put on the stack and which remain 
unnamed (i.e., not stored). Between the times when the stack display is updated, various 
operations may also create many temporary objects that you never see. When a tem­
porary object is dropped from the stack, either for use as an argument, or when it is 
stored in a global or a port variable, or just by DROP, the memory used for the tem­
porary object is not recovered right away. Eventually, memory fills up with temporary 
objects, and the HP48 must perform some "memory packing" (also less politely called 
"garbage collecting") in order to continue. This packing consists of reviewing all of the 
temporary objects, discarding those that are no longevneeded, then packing together the 
remaining objects into the minimum amount of memory. It is this memory packing that 
is taking place during the execution pauses that you observe. 

Ordinarily, the execution pauses caused by packing are so short that they have little 

-389-



12.9 Program Development 

effect on your use of the calculator. However, there are some circumstances in which 
the packing can be very time consuming, effectively paralyzing the HP 48 for many 
seconds or even minutes. For example, if you enter 1000 numbers onto the stack, exe­
cuting MEM takes about 1.7 seconds (MEM always performs a memory pack). The 
worst situation, which you s)lOuld be careful to avoid, involves the creation of large tem­
porary lists, and the extraction of the objects within the lists. After this sequence, 

1000 FOR x x NEXT 1000 -LIST OBJ-

MEM takes several minutes to execute, during which the keyboard docs not respond 
(type-ahead still works, however). You can only interrupt the packing with a system halt 
(section 6.6), which also clears the stack. 

If you find it necessary to work with large lists, you can avoid the delays due to memory 
packing by storing the lists in global variables before you take them apart. A similar 
warning applies to stack programs that enter a large number of objccts onto the stack 
during thcir execution. 

12.10 Recursive Programming 
The unlimited depth of the HP 411 subroutine return stack provides that programs can 
not only call other programs without limit, but they can even call themselves any 
number of times. This fcature permits so-called recursive prowal1ll1lillg, in which a 
repetitive calculation can be achieved by a compact program that iterates by calling 
itself. 

A classic example of recursion is the calculation of a factorial Il! = Il (Il - I) ... 2·1. 
This definition can be restated tn a recursive form: • 

If II S 1 thcn II! = 1; otherwise II! = II (11- I)!. 

The following user-defined function embodies the recursive definition: 

'FCT(n) = IFTE(ns 1,1 ,n*FCT(n -1 ))' DEFINE 

The function is defined in terms of itself, so that the name of the variable in which it is 
stored must match the name used within the defining procedure. 

Recursion is not always the fastest or most memory efficient method of computing a 
result. For the factorial (ignoring the built-in FACT function), a FOR ... STEP loop is 
better than the recursive version: 

-390-

f 
'\ 

I 

1 

1 
j 

I 
I 
! 

I 
! 



Program Development 12.10 

«1 SWAP OVER FOR n n * -1 STEP ». 

The looping done by FOR ... STEP is faster than a program calling itself, and the pro­
gram structure also takes care.of incrementing n. However, in cases involving nested 
data structures, recursion may provide the only solutions. 

The program MINL (section 12.3) finds the minimum in a list of real numbers. Using 
recursion, it is a simple matter to extend that program so that any element of the input 
list can itself be a list containing numbers or additional lists, and so on. Here's the 
revised version: 

RMINL Recursive Minimum of a List AF1E 

XII} 

«. MAXR ~NUM SWAP DUP SIZE 

1 

DUP ROT 

START 

GETI 

DUP TYPE 

IF 5 = = 

THEN RMINL 

END 

4 ROLL MI N 3 ROLLD 

NEXT 

DROP2 

U' X nun 

I MAXR {x,} n I 

Initialize m (list index). 

Loop from 1 to n. 

I Xmm {Xl} m I 

x'" 
Determine the type of object x",. 

Lists are type 5. 

If it's a list, tInd iL, minimum. 

I xmm{x,}m I 

This program provides another illustration of the power of the unlimited stack. At the 
point in the program where RMINL calls itself, there is a list in level 1, which is the 
required argument. It doesn't matter that previous parts of the program have put other 
objects on the stack--they will still be in the right place when RMINL returns (to the rest 
of itself). RMINL returns one number to levell, which is appropriate for the remainder 
of the program. The initial list can be a list of lists of lists ... , nested indefinitely. For 
example: 

{ 1 { 2 3 }{ 4 { 5 { 6 7 8 } 9 a }{ 11 } } 12} RMINL G" O. 

An additional example of recursive programming is provided by the program GSORT, in 
section 11.5.3. Lists also figure prominently in the recursive system of programs used for 

-391-



12.10 Program Development 

computing the determinants of symbolic matrices, described in section 11.7, and in the 
program GFIND, listed in section 6.1.4. The latter program features a self-recursive 
program created within a program and stored in a local variable. 

A final note on recursive programs. Remember that if you change the name (variable) 
of a program that calls itself, you have to edit the program to replace all incidences of 
the old name with the new. 

12.11 Additional Program Examples 
12.11.1 Random Number Generators 
The HP48 command RAND generates uniformly distributed pseudo-random numbers Xi, 

where an Xi is equally likely to have any value in the range 0 < X < 1. Using a uniform 
distribution generator, it is possible to generate random numbers with various other dis­
tributions. 

12.11.1.1 Poisson Distribution 
Assume X is a random variable with a uniform distribution 0 < X < I. If k is the smal­
lest integer for which 

k+l 

llxn :::; e-l'\'/ 

n = 1 

is satisfied, then k is a random variable from a population conforming to the Poisson 
distribution with mean N. Thi~ distribution is defined as 

N k 
-N 

P(k) = k!e , 

where P(k) is the probability of obtaining k events 111 an interval where the mean 
number of events is N. 

The program POlS uses this algorithm to return one random value k, where the mean 
N is entered as a stack argument. 

• Example. Generate SOO random numbers from a Poisson distribution with mean 10, 
and compute the mean and standard deviation of the SOO numbers. 

• Solution. Use L + to accumulate the random numbers into LDAT, then use MEAN 
and SDEV. 

-392· 

r 
, 



Program Development 12.11 

.12345 RDZ 1 500 START 10 POlS NEXT {500 1} ~ARRY ST02: 

generates the numbers (include the sequence .54321 RDZ if you want to check your 
results against those shown below). After executing the sequence (which takes several 
minutes), you can compute the sample statistics: 

MEAN L'" 9.994 

SDEV if 3.354 

The nominal standard deviation of a Poisson distribution IS V N, which IS V 10 
3.1623 for N = 10. 

We can usc the automatic histogram plotter for a visual inspection of the distribution of 
the data. First, to set the plot type and ranges: 

HISTPLOT -1.5 25.5 XRNG -20 125 YRNG 'N' INDEP 'Freq' DEPND 

Then, to make and view the plot: 

ERASE DRAX LABEL DRAW @2][PICTURE[ 8 

Notice the longer tail on the right, which is characteristic of the Poisson distribution. 

-393-



12.11 Program Development 

POlS Poisson Generator 70B5 

level I I level I 

N U· k 

« NEG EXP exp( -N) 

-1 1 Start k at -I; the product at I. 

DO SWAP 1 + Increment k. 

SWAP RAND * Multiply by the next x. 

UNTIL DUP 4 PICK :5 Keep going until the product is :5 exp( - N). 

END DROP SWAP DROP Return k. 

» 

12.11.1.2 Normal Distribution 
Assume x is a random variable with a uniform distribution 0 < x < 1. With a defini­
tion of y as 

y = v' - 2lnxi cos (27TXj), 

where Xi and Xj are randomly drawn from the population of x, y is a random variable 
from a population eonforming to the normal (Ciaussian) distribution with mean 0 and 
standard deviation 1. The normal distribution for a variable with mean y and standard 
deviation cr is 

P(y) = 1 exp (-JJ0f-J, 
Y27Tcr 20" 

where pry) dy is the probability of obtaining a value in the range between y and y +dy. 
The program NORM computes normally distributed random numbers with zero mean 
and standard deviation 1. 

You can obtain random numbers y/ from a normal distribution with mean y and stan­
dard deviation cr by multiplying the values Yi obtained with NORM by cr and adding y. 
The program MNORM returns such random numbers y/ , where the mean and standard 
deviation are specified on the stack. 

·394-



Program Development 12.11 

NORM Nomwl Dismbution Generator 88E7 

I levell 

IL, Yi 

« RAND Xi 

LN -2 * V ~ 
RAND Xj 

2 * 'IT -NUM * RAD COS cos (2'ITxj) 

* Y 
» 

NORM leaves radians mode active. 

MNORM Modified Nonnal DiSlTiblllion (;cnerator 7038 

/(:vei 2 h'\'Ci 1 I level 1 

y IT a .. ii 

MNORM leaves radians mode active . 

• Example. (,enerate 500 data points from a normal distribution with mean 10 and stan­
dard deviation of 3.16, for comparison with the Poisson data in the previous example . 

. 12345 RDZ 1 500 START 10 3.16 MNORM NEXT 
{500 1} -ARRY STOL 

A histogram of this data, using the same plot parameters as III the previous example, 
looks like this: 

-395-



12.11 Program Development 

Notice that this distribution is more symmetric than the Poisson data . 

• Example. Create a LDAT matrix that contains points [Xi, y;) representing a "noisy" 
straight line: 

Yi = 0.5xi + bi, 

where bi is a normally distributed random variable with mean 1 and standard deviation 
3, and the Xi are the integers - 50 through + 50 . 

• Solution: 

.54321 RDZ 
eLL 
-50 50 
FOR x x 

1 3 MNORM x 2 / + 
NEXT 
{101 2} -ARRY STOL 

Random number seed. 
Initialize :LOAT. 
x from -50 to +50. 
X, 

Y" 

Store the data. 

You can create a scatter plot of this data by executing SCATRPLOT: 

..,: •• : •• r!' 

, . 
.1'''' ..... : 

: - -':of.' ..... 
... : .. 

Then -STATL- draws the best-fit straight line: 

-396-



Program Development 12.11 

12.11.2 Prime Numbers 

The program PRIMES1 returns a list of prime numbers (not counting 1) less than or 
equal to a specificed number y. The program demonstrates the use of a stack flag (sec­
tion 9.3) to "remember" the results of tests, so that those results can be used for later 
decisions. 

PRIMES1 starts with a list containing the first three prime integers 2, 3, and 5, then suc­
cessively tests integers x greater than these to see if they are prime by dividing each by 
all prime numbers Pi for which pi..sVX. If any quotient is an integer, x is not prime, 
and is discarded. If x is prime, it is appended to the current list of primes. The process 
continues until the number to be tested is larger than y. 

A significant economy in the execution of this process is possible because every succes­
sive integer does not need to be tested, but only those in the series 7, 11, 13, 17, 19, ... , 
obtained by alternately adding 2 and 4. All integers not in this series are divisible by 2 
or 3, and so are not prime. 

The basic structure of PRIMES1 is as follows: 

DO take a candidate number x, and 
DO compute X/Pi for successive Pi in the current list 
UNTIL (1) either X/Pi is an integer, 

or 
(2) Pi > x/Pi­

END 
Then increment x 

UNTILx > y. 
END 

Note that the test (2) is equivalent to testing Pi> Vx. X/Pi is computed anyway, so it is 
not necessary to compute Yx as well. 

If test (1) is tnle, then test (2) is superfluous. In the program, the result of test (1) is 
used in an IF structure; if it is tme, the current x is added to the list of primes and a 
second fmc flag is pushed on the stack so that the DO loop will terminate. If test (1) is 
false, test (2) is executed to determine whether to continue the loop. 

·397-



12.11 Program Development 

PRIMES1 Find Prime Numbers (Version]) 4186 

level] 

y 

«RCLF 1 CF 

» 

{2 3 5} 7 - Y flags list x 
« 'list' 

» 

DO 

3 

DO 

GETI x OVER / 

UNTIL 

IF SWAP OVER 

THEN DROP2 list 

OVER STO 

1 DUP 

ELSE FP NOT 

END 

END DROP 

IF 1 FS?C 

THEN 2 

ELSE 4 1 SF 

END 

'x' STO+ 

UNTIL 'x>y' 

> 

END flags STOF EVAL 

x + 

(U" 

level ] 

{primes} 

Clear user flag 1. 

Start with x=7. 

Identify the list. 

Main loop to test x. 

Start list index at 3. 

Inner loop--divide x by all PI ,; x. 

PI xlPI 

Ifx>PI' 

add x to the list, 

and signal {me to exit. 

Exit if PI divides x. 

Drop the list index. 

Alternate increments of 2 and 4. 

Increment x. 

Repeat until x> y. 

Restore flags and return the list. 

PRIMES1 is written with a liberal use of local variables. This helps make the program 
easy to develop against the algorithm described above, and to read afterwards. As dis­
cussed in section 12.4, it is often possible to obtain speed and memory size improve­
ments in a program by keeping all quantities on the stack rather than using local vari­
ables. For example, in PRIMES1 the local name list that represents the current list of 
primes is kept on the stack throughout most of the program. It is easy to modify the 
program so that the list itself is kept on the stack, eliminating the need for the local 
variable. PRIMES2 is an alternate version of PRIMES1 that uses no local variables at 
all--it is less legible than PRIMES1, but is more compact and faster. 

In PRIMES1, user flag 1 is used to keep track of the alternate increments of 2 and 4. In 

-398-



Program Development 12.11 

PRIMES2, a stack flag is used for this purpose, which proves to be no slower than the 
user flag and eliminates the need for saving and restoring the user flag states. 

PRIMES2 uses one additional trick to save a little space. If you compare the IF struc­
ture (lines 7-10) with its counterpart in PRIMES1, you will see that the ELSE is missing 
so that FP NOT is applied incorrectly to the flag returned by the THEN sequence. Nor­
mally, this would be a program defect, but in this case the true flag (the 1) from the 
THEN sequence ends up unchanged and the program executes properly. There is no 
speed penalty, and the program is 7.5 bytes shorter than it would be with the ELSE. 
This savings is small, but the example shows that sometimes it takes more program 
space or time to prevent an unnecessary calculation than to go ahead and perform the 
calculation. This point is discussed further in the next section. 

PRIMES2 Find Prime Numbers (Version 2) 849C 

level 1 I level 1 

y 01 {primes} 

« 1 7 { 2 3 5 } Stack is: y flag x {p,'s }. 

DO Main loop to test x. 

3 Start list index at 3. 

DO Inner loop - -divide x by all p, :5 x. 

GETI 4 PICK OVER / /P, X/PI 

UNTIL 

IF SWAP OVER > Ifx>p" 

THEN DROP2 OVER + add x to the list 

1 DUP and signal true to exit. 

END FP NOT Exit if P, divides x. 

END DROP Drop the list index. 

SWAP ROT NOT Flip the increment flag. 

IF DUP THEN 2 ELSE 4 END Increment of 2 or 4. 

ROT + ROT Increment x. 

UNTIL 

OVER 5 PICK > Repeat until x >y. 

END 4 ROLLO 3 DROPN Leave the list on the stack. 

» 

-399-



12.11 Program Development 

12.11.3 Prime Factors 
The problem of determining the prime factors of a number is similar to that of deter­
mining prime numbers, since both problems require the determination of a series of 
prime numbers. One way to compute the prime factors of a number x is to create a list 
of prime numbers smaller than Vx, then divide x by the successive primes to see which 
are factors. But once any factor I is found the problem reduces to finding the factors of 
xii, so that the original list of primes may be unnecessarily long. It is faster, therefore, 
to compute the successive prime numbers only as needed. 

This brings us back to the point mentioned in the discussion of PRIMES2 in the preced­
ing section, which is that carrying out an unnecessary calculation may be faster than 
deciding whether it is necessary. In the problem of determining prime factors of x, only 
division by prime numbers is strictly necessary. But it takes a good deal of calculation 
to determine if a number is prime, so it may be faster to try all integers less than the 
square root of x than to weed out non-prime integers. At the same time, it will certainly 
save time to use the trick of alternating increments of 2 and 4 used by PRIMES2 to 
avoid integers that are divisible by 2 or 3. 

The program FACTORS returns the prime factors of an argument x, including repeated 
factors. This particular version makes several compromises between compactness, 
speed, and program legibility: 

• The basic test "if this is a factor, add it to the list of factors" is encoded as a subrou­
tine program object (lines 2-~) rather than repeating the sequence for each succes­
sive potential factor. Executing the subprogram from the stack with PICK EVAL is 
faster than using it from a local variable, at the cost of making the program lcss legi­
ble and harder to modify. 

• Potential factors 2, 3, and 5 are always tested. This causes a slight speed penalty for 
factoring numbers that are multiples of 2 and 3 only, but is faster for other numbers. 

• The DO loop (lines 13-16) does both increments of 2 and 4, without testing to see if 
the increment of 4 is unnecessary (i.e. the factoring is complete after the 2 incre­
ment). The test DUP2 MOD NOT in the subprogram is faster than the DUP2 
SWAP V > that would be necessary to prevent calling the subprogram. Moreover 
the subprogram is never called unnecessarily more than once, whereas an extra test 
would have to be executed during each iteration of the loop. 

-400-



Program Development 

FACTORS Find Prime Factors 5800 

l!!Vel 1 level 1 

y U' {primes} 

« Subroutine to test one potential factor f: 
WHILE DUP2 MOD NOT 

REPEAT 

ROT OVER + 3 ROLLO 

SWAP OVER / SWAP 

END 

{} 3 ROLL 

2 4 PICK EVAL DROP 

3 4 PICK EVAL DROP 

5 4 PICK EVAL 

DO 2 + 4 PICK EVAL 

4 + 4 PICK EVAL 

UNTIL DUP2 SWAP V > 

END DROP 

IF DUP 1 '" 

THEN + 
ELSE DROP 

END 

SWAP DROP 

12.11.4 Simultaneous Equations 

If [divides x. 

add [to list. 

and replace x with xlf 

Start with empty list. 

Try [=2. 

Try [=3. 

Try [=5. 

Try incrementing [by 2 and 4 

Until [>Vx. 

Unless x is 1. 

add it to the list. 

Otherwise discard it. 

Discard subroutine. 

Consider the set of simultaneous linear equations 

aU X l+ a 12 X 2+ 

a21 x l + a22 x 2 + 

+ a lnxn = C 1 

+ a2n X n = C2 

12.11 

where there are n equations in n unknowns Xl' •. Xn . The aU are the coefficients of the 
unknowns, and the Ci are the constant terms. 

·401-



12.11 Program Development 

These equations are straightforward to solve on the HP 48. Defining the coefficient 
matrix 

A 

and the unknown and constant vectors 

x = 

all al2 ... aln 

a21 a22 . .. a2n 

then the set of simultaneous equations can be represented as the matrix equation 

Ax = c. 

The solution can be found by premultiplying both sides of the equation by the inverse of 
A: 

x=A-1t 

On the HP 48, you can obtain this solution by entering the constant vector c into level 2 
and the coefficient matrix A into level 1, then executing / (divide). This returns the 
unknown vector x to level 1. 

This method is very simple, but has the drawback that it requires you to determine the 
coefficients and constants from the equations, and enter them in a very specific order, 
which is contrary to the spirit of the HP 48. A better approach is demonstrated by the 
program SIMEQ below, which does all of this work for you. SIMEQ expects to find a 
list of names in level 1, preceded in higher levels by as many equations as there are 
names in the list. The specified names indicate which of the variable names in the 
equations are the unknown variables--all other variables that appear in the equations 
must have numerical values (via ~NUM). The equations may appear in any order, and 
there are no restrictions on the form of the equations, except that they must be linear in 
the unknown variables. 

-402-



Program Development 

SIMEQ Simultaneous Equations 4AD3 

level n .. level :2 level 1 

I equation I' ... I cquationn I { name 1 •.• nomen} 

«DUP SIZE - v n Save the list of names in v, and the number 
of names in n. 

» 

«n -LIST - e Combine the equations into a list, and save 
in e. 

« 

» 

1 n 
FOR x 0 v x GET STO Store zero in each unknown variable. 
NEXT 
e OBJ- Put the equations on the stack. 
1 SWAP 
START n ROLL -NUM NEG Compute each constant term. 
NEXT 
n -LIST - C ('ombine the constants into a list. and save 

in c. 
«1 n For each variable .. 

FOR x 1 v x GET STO Assign the value I to the variable. 
e OBJ-
1 SWAP 
FOR i n ROLL -NUM 

c i GET + 

NEXT 
o v x GET STO 

NEXT 
n DUP 2 -LIST 
-ARRY TRN 

c OBJ- 1 -LIST -ARRY 
SWAP / 
OBJ- DROP 
n 1 

Put the equations on the stack. 
For each equation ... 

Evaluate the equation. and 
subtract the constant term. 
leaving the coefficient. 

Reset the vdfiable to O. 

Combine all the coefficients into a square 
matnx. 
Convert the constant list in a vector. 
Compute the unknown vector. 
Put the values on the stack. 

FOR m v m GET STO Store each value in its variable. 
-1 STEP 

12.11 

SIMEQ determines the constant terms in the equations by setting all of the unknowns to 
zero, then evaluating the equations. It next subtracts the constants from the equations, 
and determines the coefficients by assigning the value 1 to one unknown variable at a 
time, and evaluating the equations. The coefficients are combined into a matrix, and 
the constants into a vector so that the vector of unknowns can be obtained by dividing. 
Finally, the values of the unknowns are stored in the corresponding variables. 

-403-



12.11 Program Development 

• Example. Five packages are weighed in pairs, yielding the weights 90, 110, 120, 140, 
120, 130, 150, 150, 170, and 180 pounds. What are the weights of the individual pack­
ages? 

• Solution. Call the unknown weights A, B, C, D, and E, where A is the lightest weight 
package and E is the heaviest. Then the lightest combination is A and B, so 

A + B = 901bs. 

The next lightest combination must be A and C: 

A + C = 110 Ibs. 

Similarly, the heaviest two combinations are 

D + E = HID Ibs, 

and 
c + E = 170 Ibs. 

Finally, you can observe that the total weight of all the combinations must be four times 
the total weight of the packages: 

4 (A + B + C + D + E) = 1360 Ibs. 

These are the five equations you need to solve the problem. On the HP 48: 

'A+B=90' IENTERI 

'A+C=110' IENTERI 

'D+E= 180' IENTERI 

'C+E= 170' IENTERI 

'4*(A+ B+C+D+ E) = 1360' IENTERI 

puts the equations on the stack. Then, to solve the equations: 

{ ABC DE} SIMEQ ABC D E L~ 40 50 70 80 100 

12.11.5 Infinite Sums 
In section 12.8 we presented a program INFSUM that computes an infinite sum of terms 
defined by a separate program. For some sums, it is more accurate to compute each 
term Tn from the previous one Tn _ 1, rather than computing each term independently. 
The programs PTINFSUM and XPTINFSUM (listed in section 12.11.5.3) use this 
approach. The first program PTINFSUM is a variation of INFSUM, for which you sup­
ply a stack program that computes Tn as a function of n and Tn-I' PTINFSUM also 

-404-



Program Development 12.11 

requires you to specify the initial value no of the index, and the value of the first term 

Tno' 

W /13 

• Example. Compute L -. 
n =1 2

n 

1 ( /1 )3 
• Solution: In this case, Tn = 2 l (n- 1) , no 1,andT] 0.5. Thus, 

« DUP / 3 2 / *» .5 PTINFSUM 00"" 25.9999999997. 

Many mathematical functions can he computed from an infinite sum for which the terms 
arc functions of a variable as well as of the summation index. The program 
XPTINFSUM is a further variation of PTINFSUM, in which the value of a variable is also 
an input argument, in addition to the arguments required by PTINFSUM. Thc program 
that computes Tn from Tn- 1 and II can also be a function of the variahle. 

Thc programs SI and CI in thc next sections illustrate the usc of XPTINFSUM to com­
pute sinc and cosine integrals, respectively. The series expansions for these intcgrals are 
taken from M. Abramowitz and LA. Stcgun, Handbook of Mathematical FUllctiolls 
(National Bureau of Standards, 19(4). 

12.11.5.1 Sine Integral 
The sine intexral Si (x) is dcfincd as follows: 

< 
c· () I· sin t d dl X = -- t 

o t 

The integral can be computed from the infinite series: 

Si (x) n~o (211 + 1)(211 + I)! 

for x>O, and Si (x) = -Si (-x) for x<o. 

The program SI uses XPTINFSUM to compute this sum, with the assignments no 0, 
To = x, and 

·405-



12.11 Program Development 

T = T (_ (n - Yc)x
2 

) 
n n-l 4n(n + .5)2 

Since Tn is a function of x 2
, SI saves repeated computation of the square of x by using 

x 2 rather than x as the variable argument for XPTINFSUM. 

Examples: 

.5 SI Lo""" .493107418043 

3 SI LT 1.848652528 

You could obtain these same results using the HP 41-1's numerical integration capability, 
such as with the following alternate form of SI: 

«- X 'J(O,x,SIN(t)/t,t), -NUM». 

This program is obviously easier to write than the previous version. However, the pro­
gram using the infinite sum is considerably faster than that using f. 

12.11.5.2 Cosine Integral 
The cosine integral Ci (x) is defined by 

C·· ( ) I IX cos t - 1 d 
I \x = 'Y + nx + I, 

o t 

where 'Y 
senes 

.5772156449 (Euler'S constant). Ci (x) can be calculated from the infinite 

00 -lnx 2n 

Ci (x) = 'Y + Inx + 2: ()' 
n=I2n2n· 

for x >0, and 

Ci (x) = Ci ( -x) - i7r for x < 0. 

The parameters for XPTINFSUM are Il 0 = 1, T I = - x 2 14, and 

-406-



Program Development 12.11 

Tn is a function of - X
2

, so CI uses - x2 rather than x as the variable argument for 
XPTINFSUM. 

Examples: 

0.5 CI u] - .177784078808 

3 CI ~ " .11962978602 

-407-



12.11 Program Development 

12.11.5.3 Sum Programs 

PTINFSUM Infinile Sum from Previous Tenn 2DFB 

level 3 level 2 level] I level] 

«tenn » Tno no U" sum 

« ROT - term Save « lcnn » 

« OVER SWAP I T"o Tno n I 
DO I sum(n) Tn nl 

1 + Increment n. 

SWAP OVER term -NUM I sum (n - I) n Tn I 
SWAP ROT 3 PICK OVER + In Tn sum (n -I) sum(n) I 
DUP 5 ROLLD I sum (n) Tn n sllm(n-I) SlIm (n) I 

UNTIL - - Repeat until the sum is unchanged. 

END DROP2 
» 

» 

The argument « lenn » must have the logical form« - In' lem, (/,n)' ». 

XPTINFSUM Infinite Slim in x from Previolls Tenn 11CD 

/CI'ci 4 /CI'd 3 /CI'Cl 2 level ] I /CI'Cl ] 

« (cnn » Tno "o x Lr slim 

« 4 ROLL - X term Save« tem, » and x. 

« OVER SWAP I 1~,0 Tno Il 0 I 
DO I slim (Il) r Il I 
1 + SWAP Increment n. 

OVER x I sum(Il-I) Il Tn - 1 Il xl 
term -NUM I sllm(Il-I) Il 1~ I 
SWAP ROT 3 PICK OVER + I Tn n sum (n-l) sum (Il) I 
DUP 5 ROLLD I sum(ll) T" n sum (n - I) sum (n) I 

UNTIL - - Repeat until the sum is unchanged. 

END DROP2 
» 

» 

The argument« lenn » must have the logical form« - I n x 'Ienn (/,n,x), » . 

.. 408 .. 



Program Development 12.11 

SI Sinc Integral A102 

level 1 I levell 

x LY Si(x) 

« 

IF DUP If x = 0, just return O. 

THEN DUP ABS 0 OVER SO Ix To no x
2 I 

« Start of « tenn ». 

SWAP - n 

« n .5 - * NEG 4 / 
n .5 + SO n * / * 

» 

» End of « len1l ». 

4 ROLLD Ix <s lcml » x To no x2 I 
XPTINFSUM Ix slim I 
SWAP SIGN * I Si(x) I 

END 
:::.~> 

CI Cosinc flztc!.,'Yal F17C 

ICI'cl 1 I ICI'cl 1 

x a" Ci(x) 

« DUP ABS DUP LN 

SWAP SO NEG Ix In Ix I _x 2 I 
DUP 4 / SWAP 1 SWAP I x In Ix I -x 2/4 1 _x 2 I 
« SWAP - n Start of « ten1l ». 

« 2 / n SO / n 1 - * 
n 2 * 1 - / * 

» 

» End of « (eml ». 

4 ROLLD Ix In Ix I « te1711 » x To 11 0 x2 I 
XPTINFSUM Ix In Ix I ~I 
+ .5772156649 + 
SWAP 

IF 0 < 
THEN i TI * - Subtract i TI if x < O. 

END Ci (x). 
» 

-409-





Program Index 

ADDV Concatenate Vectors 332 
AGXOR Animate with GXOR 283 
APLY1 Apply Program to 1 Symbolic Array 336 
APLY2 Apply Program to 2 Symbolic Arrays 336 
APVlEW Animation with PVIEW 286 
AREPL Animation with REPL 286 

ASN41 ASN HP41-style 197 
ASN48G ASN HP 48Ci Style 379 

ASTO Animation with STO 286 

BINCALC Binary Integer Calculator 208 

BOUNCE Bouncing Ball Demo 287 

BS? Bit Set" 192 

CALCS Special Calculators 377 
CB Clear Bit 192 
CEQN Characteristic Equation 342 

CHARDISP Display Ill' 48 Characters 277 
CHKINPUT Prompt and Check Input 363 

CI Cosine Integral 409 

CINT Circle in a Triangle 265 
COpy Copy a Variable 160 

COUNT4 Count in 4 Ranges 245 

CRCIJ Column-wise RCIJ 304 
CROSSF CROSS Function 311 
D2 2D Program 310 

D3 3D Program 310 
DATENAME Create a ;\lame from the Current Date 18() 

DFACT Double factorial 250 

DIM Symbolic Array Dimensions 333 
DOTF DOT function 311 

DRAWPIX DRAW using PIXON 291 

EVENELS Even-numbered List Elements 322 
FACTORS Find Primc Factors 401 

FIB fibonacci Series Generator 327 

FIND Find a Variable 157 
FRACALC Fraction Calculator 210 
FRAME Frame the Picture Screen 293 
GCD Greatcst Common Divisor 255 
GENRANDS Generate Random Numbers 380 
GSAMP Graphics Samples 279 

GSORT General-purpose Sort 328 
HP48G? Running on a HP48G/GX? 75 
INFSUM Compute an Infinite Sum 387 
KEEP Keep N Objects 135 
KEYHALT Halt if a Key is Pressed 372 
KEYTIME Wait a Specific Time for A Key 372 
LCM&GCD LCM and GCD 383 

-411-



Program Index r 
~, 

MFRAMES Make frames for ANIMATE 289 
MINFSUM Compute an Infinite Sum (Monitor) 387 
MINISTK Small-font Stack Display 285 
MINL Minimum of a List (Good Version) 354 
MINOR Minor of a Matrix 302 
MNDROP DROP m through n 136 
MNORM Modified Normal Distribution Generator 395 
MOVE Move a Variable 161 
MSGSHOW Show Messages 375 
NORM Normal Distribution Generator 395 
N-S Numeric to Symbolic 335 
OLABEL Object Labeling Utility 278 
POlS Poisson Generator 394 
PRIMES1 Find Prime Numbers (Version 1) 398 
PRIMES2 Find Prime Numbers (Version 2) 399 
PROMPTCONT Prompt with CONT Display 3(,2 

PTINFSUM Infinite Sum from Previous Term 408 
OU Quadratic Root Finder 351,358 
RC-R Real/Complex to Real 243 
RENAME Rename a Variable 160 
RMINL Recursive Minimum of a List 391 
-SA Stack to Symbolic Array 334 
SA- Symbolic Array to Stack 334 
SADD Add Symbolic Arrays 337 
SB Set Bit I'!I 

SCOF (Unsigned) Symbolic Cofactor 34() 

SDET Symbolic Determinant of a Matrix 34() 

SFRAMES Show Animated Frames 289 
SI Sine Integral 4()9 

SIMEO Simultaneous Equations 401 
SIMPSON Simpson's Rule Integration 324 
SKETCH Sketch Lines 293 
SMINOR Minor of a Symbolic Matrix 341 
SMS Scalar Multiply Symbolic Arrays 338 
SMUL Multiply Symbolic Arrays 338 
S-N Symbolic to :--';umeric 335 
SSUB Subtract Symbolic Arrays 337 
STAR Draw a Star 292 
STRN Transpose Symbolic Array 337 
SUM4 Sum I/x4 385 
SUMTERM Compute an Infinite Sum from TERM 386 
TIMED Timed Execution 388 
TPIX Toggle a Pixel 292 
VANGLE Angle Between Two Vectors 305 

VSUM Sum Vector Elements 250 
XARCHIVE Extended Archive 185 
XFORM Coordinate Transformation 311 

XPTINFSUM Infinite Sum in x from Previous Term 408 

-412-



Subject Index 

- 222, 226, 263, 271, 330 

- 270 

41 
{} 45 
() 38 

49 
(iiJ 89 
I 111, 119 
« 229, 230 

> 239 

< 239 

"" 239 
:S 239 

240 
240 

* 240 
+ 279,281,313,316,317,320 
24-hour format 194 
2D 3IO 
3D 310 
aborting programs 348 
ABS 30S 
accuracy, internal 37 
acknowledged alarms 194 
action 34, 36 
action flag 

exception 261 
infinite result 261 

activation 34 
ADD 61,317,318 
",ENTER 207 
alarm, acknowledged 194 
alarm beep 195 
algebraic 53 

calculator 25 
entry mode 86, 223 
evaluation 54 
mode 85 
object 3, 25, 29, 33, 34, 36, 52, 71, 216 
syntax 52 

algebraic/program mode 85 
alpha key action 195 
analytic function 30 
angle mode 189, 194,308,309 
ANIMATE 287 

annunciator 
busy 89 
user 195 

ARC 293,294 
ARCHIVE 183 
argument 20 

saving 158 
disappearing 137 

array 44, 297, 332 
entry lUI 
symbolic 332 

-ARRY 130, 297 
ARRY- 298 
ASCII file 231 
ASN 196, 198,200 
assignment, key 189 
ATIACH 174, 175, 177 
attaching library 173 
automatic 

-413-

linefced 194 
list application 60 
list processing 58, 59 
mode change 86 
simplification 61, 65 

automating calculations 211 
backspace 119 
backup object 51 
Bad Argument Type 54, 58 
Bad Argument Value 58 
base 116 
BASIC language 2, 36, 217, 262 
beep, error 195 
J3ENTER 207,284 
BIN 194 
binary integer 45 
binary transfer 194 
BLANK 280 
body, program 230, 231 
BOX 293,294 
branch 241 

conditional 241 
unconditional 241 

browser 
flag 193 
memory 153, 156, 159 

buffer, key 371 



built-in object 67 
built-in program object 35 
busy annunciator 89 
BYTES 14, 46, 156, 240, 350, 359 
CALC 98 
calculation, automating 211 
calculator 

algebraic 25 
binary in teger 208 
calculator, symbolic 3 
fraction 209 

CANCEL 83, 258, 348, 371 
CANCL 93 
CASE structure 244 
catalog, fast 195 
cell 100 
cell cursor 101 
CF 63, 191. 238 
changing variable contents 164 
character code 42, 44 
characteristic equation 342 
check field 94 
checksum 359 
CHOOSE 378 
choose box 95 
choose field 95 
CHR 44 
Circular Reference 158 
class, 

data 36 
name 36 
object 36 
procedure 329 

CLEAR 126 
clear flag 189 
clearing 126 
clipping 295 
CLLCD 276, 277 
clock 194 

timed execution 388 
closing subexpression III 
CLUSR 158 
CLVAR 158 
CMD 190 
code, key 196, 371, 373 
code object 34 
cofactor 339 
COL+ 300 
COL- 301 
COL- 298 
-COL 298 
column number 163 

column vector 304 
combining RPN and algebraic 26 
command 30, 57, 67, 173 

library 141 
test 237, 239 

Subject Index 

command line 72, 83, 84, 88, 89, 218, 367 
command stack 88 

-414-

comment 41,89,232 
common notation 21 
compact format 12 
compatibility 7 
complex array, MatrixWriter 102 
complex number 38 

in an algebraic 39 
result 40 

composite object 56, 71, 312, 330 
CON 164, 167, 299, 324 
concatenation 42 

list 313 
conditional 36, 237 

branch 241 
configuration program, library 176 
constant, symbolic 66, 121, 194 
CaNT 199,330,346,348,349,361,365 
contents, program 52 
contravariant vector 304 
coordinate mode 307, 309 

polar 309 
rectangular 309 

coordinate system 194 
coordinates 

cylindrical polar 306 

logical 289 
pixel 275, 279 
polar 38, 306 
rectangular 306 
spherical polar 306 

copying stack objects 128 
cosine integral 406 
counted string 41 
counter 166 
covariant vector 305 
C-PX 290, 294 
C-R 40 
CRDIR 147 
CROSS 305, 311 
CST 200 
CSWP 300 
current directory 147, 179 
current path 147, 175 
cursor 

cell 101 

" 



Subject Index 

graphic 194 
subexpression 121 

cUlVe filling 194 
custom error 259 
custom menu 189,200 

permanent 200 
temporary 201 

customization 189 
CYLIN 307 
cylindrical polar coordinates 306, 308 
IMATCH 55 
data field 9() 

data object 36 
data-class 329 
date format 194 
DBUG 349, 352 
debugging 349 
DEC 194 
decimal digits 195 
decimal number format 195 
DECR 164, 166 
DEFINE 143, 145, 221, 224, 226 
defining expression 222 
defining procedure 14, 263 
definite loop 246, 250 
definition, 

object 31 
program 52 

~DEL 91 
deleting suspended program 348 
delimiter 31,79,88,230 

quotation mark 71 
DELKEYS 198 
DEL- 91 
denominator 114 
DEPTH 312 
DETACH 177 
determinant 339 
diagram, stack 14 
digit-group commas 38 
directory 50, 68, 146 

current 147, 179 
home 146 
PURGE 152 

Directory Not Allowed 152 
Directory Recursion 153 
disappearing argument 137 
DISP 276, 364, 382 
display 273 

freeze 276 
graphics 186, 278 
output 382 

-415-

standard 78, 274 
distribution, 

Gaussian 394 
normal 394 
Poisson 392 

divide bar 114 
~ LIST 317, 321 
DO 256 
DO loop 253 
DOERR 173, 257, 259 
DOLIST 61, 318, 320, 321, 323 
DOSUBS 317,321 
dot 305 
DOT 311 
double quote 41, 71 
double space 194 
DRAW 63, 266, 291 
DROP 126 
DROP2 127 
DROPN 127 
DUP 128,140 
DUPN 130 
ECHO 91 
EDIT 90, L05, 134, 152, 343, 350 
EDIT menu 90, L05 
editing program 343 
edit/view 91 
ELSE 241 
else-sequence 241 
empty 137 

END 241 
endless execution 69, 158 
ENDSUB 322 
ENTER 23, 30, 83, 84, 130 

explicit 84 

implicit 84, 89 
vectored 88, 89, 195, 206 

ENTRY 87 
entry, 

array 101 
object 79 
text 80 

entry mode 85, 86, 203, 205 
algebraic 86, 223 
program 85, 86, 134, 143, 217, 230 

environment 15, 78 
plot 15,78 
standard 15 

EQ 164 
equality 239 

logical 239 
physical 239 



equation, characteristic 342 
EquationWriter 91,92,97, 107,284 
ERRO 173, 258 
erratic execution 389 
ERRM 173, 257, 259, 348 
ERRN 257, 258, 259 
error 256 

beep 195 
trap 256, 260 
seq uence 257 
custom 259 

error message, last 186 
error number, last 186 
EVAL 35,51,56,59,63,68,69,72, 170, 182,329,330 
evaluation 20, 29, 35, 329 

algebraic 54 
exception 261 

action flag 261 
exchange of arguments 127, 29 
execution 34, 35, 68, 162 

by address 73 
endless 69, 158 
erratic 389 
global name 162 
local name 70, 162 
numerical 61,63, 65, 66 

numeric/symbolic 194 
postponed 89 
preventing 35 
symbolic 61, 66 
timing 388 

exit 241,250 
EXPAN 55 
explicit ENTER 84 
exponent 37 
exponentiated 116 
EXPR 121 
expression 20, 53 

defining 222 
fast catalog 195 
FC? 239 
FC?C 191,239 
field, 

check 94 
choose 95 
data 96 
parameter 93 

firmware 6 
flag 63, 189, 236, 365 

-2 65 
-3 65 
-55 58 

-416-

browser 193 
clear 189 
stack I'll 
system 189 
user 190,238 

floating-point 37 
font 284 
FOR 246,252 
formal variable 69, 266 
format, 

24-hour 194 
compact 12 
date 194 
key II 
linear 106 

FOR ... NEXT 246,263 
FOR. .. STEP 249, 263 
FORTH 5,125 
fraction entry, symbolic 114 
fraction mark 195 
FREE 169 
FREE1 169 
FREEZE 276,361,364,382 
freeze display 276 
FS? 238,239 
FS?C 191,239 
function 20, 29, 30, 52, 57, 221 

analytic 30 
mathematical 223 
menu 82 
top-level 55 

Subject Index 

user-defined 112, 145, 212, 220, 221, 226. 311 
garbage collecting 389 
Gaussian distribution 394 
GCD 255,383 
generations, calculator 2 
GET 158, 163, 164,202,300,303,315, 325, 330 

implicit 164 
GETI 163, 164,300,315 
global name 34, 67, 68, 69, 142, 148, 180, 181, 

262,361 
execution 162 

global variable 50,67,68, 141, 142, 179,262, 
266, 270, 361 

Gal 102 
GaR 281, 285, 290 
GO- 102 
GOTO 233 
graphic cursor 194 
graphical display of expressions 107 
graphics 274 

display 186, 278 



Subject Index 

object 46, 278, 279 
greatest common divisor 383 
GROB 46 
-GROB 110, 284 
guillemet 71 
GXOR 282, 285, 290 
HALT 99, 162, 330, 345, 347, 348, 349, 352, 361, 

364, 367 
HEAD 44, 315, 316 
helvetica 11 
HEX 194 
hidden parentheses 195 
HOME 148, 155, 157, 182 
home directory 146 
HP Solve 63, 212, 217 
HP35 2 
HP41 2 
HP65 2 
IDN 164, 167, 298 
IF 241 
IF structure 241 
lFERR structure 349, 371 
1FT 36, 56, 243, 244, 330 
IFTE 36, 56, 243, 244, 330 
1M 40 
immediate entry mode 85, 86 
immediate-execute key 84 
implicit ENTER 84, 89 
implicit GET 164 
implicit parentheses 116 
implied multiplication 113 
Improper Definition 225 
Incomplete Subexpression 112 
INCR 164, 166, 254 
indefinite loop 246, 250, 253 
independent RAM 172 
index for GET 163 
index, loop 247, 263 
index wrap 195 
infinite result 194 

action flag 261 
infinite sum 404 
infix notation 21 
infix operator 113 
INFORM 376, 378 
inner prod uct 305 
INPUT 367, 373 
input and output 361 
input form 81,92,93, 192,376,378 
input list 324 
insert mode 91 
Insufficient Memory 58 

-417-

interactive stack 91, 92, 132, 312 
intermediate result list 327 
intermix binary and real 45 
intermix real and complex 40 
internal accuracy 37 
Invalid Array Element 101 
Invalid Card Data 168 
Invalid Dimension 59,302, 316, 318, 321, 323 
Invalid Object Type 98 
Invalid Syntax 112 
Invalid User Function 226,319,323 
IR port 194 
ISOL 223, 266 
italics II 
iteration 241, 246 
KEEP 134 
Kermit message 194 
Kermit ovelWrite 194 
key 

action, user 195 
assignment 189, 195 
buffer 371 
code 196,371,373 
format 11 
menu II 
plane 196 
shifted 11 

type 85 
KEY 367, 371, 373 
keyboard 79 

standard 78 
key-per-function 77 
KILL 348 
label 233 
LAST 130 
last argument recovery 58, 59, 130, 158, 195; 

260,344 
last error message 186 
last error number 186 
last menu 81 
LASTARG 58, 130, 158,260 
LCD- 278 
LCM 383 
least-common-multiple 383 
LET 145 
LEVEL 134 
level, 

stack 33, 125 
sub expression 55 

LlBEVAL 76 
library 34, 50, 167, 173, 186 

command 141 



ID 173 
title 175 

LIBRARY menu 50, 168, 169 
L1BS 177 
LINE 292, 294 
linear format 106 
LISP 5 
list 29, 34, 36, 45, 56, 297, 312 

concatenation 313 
input 324 
output 326 
sort 317 

L1ST- 314 
-LCD 276, 278 
-LIST 312, 313, 314 
local memory 162, 177, 186, 263, 266 
local name 34, 70, 162, 179, 181, 222, 224, 262 

execution 70, 162 
resolution 267 
variable 67,70, 132, 136, 161, 179,221, 

222, 247, 262, 263, 266, 270, 347 
variable structure 179, 263 

logical 
coordinates 289 
equality 239 
operator 237 

loop 246 
definite 246, 250 
indefinite 253 
index 247, 263 
sequence 253, 254, 255 

LR 383 
~ukasiweicz, Jan 21 
magnitude, unit 49 
manipulation, symbolic 212 
mantissa 37 
manual operation 30 
mathematical function 223 
matrix 44, 297 
MatrixWriter 91,97, 100, 190 
MEM 156, 168, 169, 199,389 
memory 

browser 153, 156, 159 
local 162, 177, 186, 263, 266 
packing 389 
reset 187 
user 67, 146 
VAR 67 

Memory Clear 187 
menu 

custom 189, 200 
function 82 

-418-

exit 82 
key 11 
key label 78 
last 81 
port 171, 172 
screen 273 
solve variables 213 
sub expression 121 
VAR 143, 180, 200, 262 

MENU 7, 81, 82, 201, 365 
MERGE 169 
MERGE1 169 
message 

box 383 
prompt 195 
table 260 

minor 339 
mode 15, 189 
mode, 

algebraic 85 
angle 189, 194, 308, 309 
change 86 
coordinate 307, 309 
cntry 85, 86, 203, 205 
insert 91 
numeric 241 
symbolic 241 
user 81, 109, 186, 195 

mode-dependent key 85 
moving a variable 159 
moving average 322 
MSGBOX 383 
multiplication, implied 113 
name 33,67, 141,249 

Subject Index 

global 34,67,68,69, 142, 148, 180, 181, 
262,361 

local 34,162, 179, 181,222,224,262 
port 170, 180, 181 
path 182 
port 170, 180, 181 
quoted 70 
resolution 148, 178, 267 

NEG 279,280 
negative pixel coordinates 294 
newline 102, 384 
NEWOB 173, 328, 331 
non-analytic function 30 
Non-Empty Directory 152, 158 
normal distribution 394 
normal-sequence 257 
NOT 255 
notation 11 



Subject Index 

common 21 
infix 21 
Polish 21 
prefix 21 

NSUB 322 
NUM 44 
~NUM 36, 63, 65 
number, 

complex 38 
prime 397 
random 392 
real 37 
row 163 
type 31 

numbered register 67 
numerator 114 
numeric mode 241 
numerical exccution 61,63,65,66 
numeric/symbolic execution 194 
OBJ- 314 
object 29, 83 

class 36 
entry 79 
string 88 
type 31 
value 31 

object, 
algebraic 3, 25, 29, 33, 34, 36, 52, 71, 216 
backup 51 
binary integer 45 
built-in 67 
code 34 
composite 56, 71, 312, 330 
complex number 38 
data 36 
global name 34,67,68,69, 142, 148, 180, 181, 

262, 361 
graphics 46, 278, 279 
library 34,50, 167, 173, 186 
local name 34, 70, 162, 179, 181, 222, 224, 262 
program 34 
real number 37 
string 41 
symbolic 72 
system 31 
tagged 47, 383 
unit 49 
untagged 47 

Object In Use 172, 177 
object-to-grob conversion 284 
OBJ~ 39, 40, 42, 43, 48, 55, 127, 180, 

207,298 

OCT 194 
OK 93 
operation 29, 67 

manual 30 
operator, 

infix 113 
logical 237 

optimization, program 355 
ORDER 144, 159, 180 
order, row 298, 301 
output display 382 
output list 326 
OVER 129 
overflow 194 
Overflow 262 
Owner's Manual 8 
packing, memory 389 
page 81 
parent 148 
parsing 88 
PATH 147, 182, 330 
path, current 147, 175 
path name 182 

-419-

PDIM 286 
pencil-and-paper 22 
permanent custom menu 200 
PGDIR 158, 184 
physical equality 239 
PICK 128 
PICT 285, 286 
PICTURE 78, 274, 275 
picture screen 78, 273, 278, 284 
PINIT 168 
PIX? 292, 294 
pixel coordinates 

negative 294 
PIXOFF 292, 294 
PIXON 290, 294 
IlLlST 317 
plot environment 15, 78 
Poisson distribution 392 
POLAR 307 
polar coordinate mode 309 
polar coordinates 38, 306 

cylindrical 306, 308 
spherical 306, 309 

Polish notation 21 
port 167, 168, 169, 172, 173 

o 167 
I 167 
2 168 
3-33 168 



menu 171, 172 
name 170, 180, 181 
printer 194 
variable 141, 167, 170, 172 

POS 43,316 
postponed execution 89 
PPAR 164, 289, 290 
precedence 21, 195 
prefix notation 21 
preventing execution 35 
prime number 397 
principal value 194 
printer port 194 
problem solving 211,214 
procedure 52, 216,217 

as argument 384 
class 329 
defining 14, 263 

program 33,52,57,212,217,229,235,329 
aborting 348 
as argument 363, 384 
body 230, 231 
content~ 52 
definition 52 
editing 343 
entry mode 85,86, 134, 143,217,230 
legibility 221 
object 34, 35 
optimization 355 
quote 71 
structure 52, 218, 229, 231, 235, 330, 35S 
structure word 36, 60, 85, 229, 236 

program entry mode 
algebraic 85 
quoted 72 
suspended 345, 361 
unquoted 72 

programming 211,218 
recursive 390 
structured 218, 232, 233, 345 

PROMPT 99, 330, 345, 347, 349, 352, 361, 362, 364, 
367,382 

prompt message 195 
PRVAR 170, 350 
PURGE 149, 156, 157, 158, 170, 172, 173, 174, 269, 285 

directory 152 
recovery 158 

PUT 164, 166, 167, 202, 300, 303, 316,325 
PUTI 164, 166, 167, 300, 316 
PVARS 168 
PVIEW 275, 290, 382 
PX- 290,294 

-0 59, 61, 209 
-011' 61 
QUAD 266 
quotation mark delimiter 71 
quote, 

double 41,71 
program 71 
single 71 

quoted name 70 
quoted program 72 
quoting tagged object 172 
RAND 392 
random number 392 
RATIO 115 
RCIJ 304 
RCL 68, 163, 170, 174, 182, 238, 285 
RCLALARM 198 
RCLF 191 
RCLKEYS 198 
RCLMENU 202 
RCWS 194 
RDM 164, 167, 299 
RE 40 
real number 37 
Recover RAM 187 
recovery 346 

PURGE 158 
stack 99, 130, 344 
STO 158 

RECT 307 
rectangular coordinate mode 309 
rectangular coordinates 30(, 
recursive programming 390 
referenced 172 
register 141 

numbered 67 
storage 68 

REPEAT 60,255 

Subject Index 

REPL 43, 123,283,285,287,290,301,302,315 
Replace RAM, Press ON 169 
reschedule 194 
RESET 94 
reset, memory 187 
resolution, 

local name 267 
name 148, 178, 267 

RESTORE 184, 186 
result 20 

complex number 40 
Reverse Polish Notation 19 
review 144 
REVLlST 316,317 

-420-



Subject Index 

right hand 12 
ROLL 127. 127 
ROOT 217. 266 
ROT 128 
row 

number 163 
order 298.301 
vector 304. 305 

ROW+ 300 
ROW- 301 
RPL 5 
RPN 3, 19 
RPN calculator principle I,). 56 
RPN command 30 
R-C 40 
RSWP 300 
RU LES 82. 92, 108. 123 
S 198 
SAME 48.23') 
SCI 37 
SCONJ 164. 167 
screen 78, 273 

picture 78. 273. 278, 284 
text 78. 273. 278 

LDAT 164 
separator Sf{ 

SEQ 252.323 
sequence 12. 229, 24(). 24') 

error 257 
loop 253. 254. 255 
of argumenL' 318 
test 241. 253. 254. 255 

set flag 189 
SF 63, 191,238 
signal flag 190. 261 
simplification, automatic 61.65 
simultaneous equations 4tH 
SIN 189 
sine integral 405 
single quote 71 
single-step 348, 351 
SINV 164, 167 
SIZE 43, 279, 280, 285. 299. 316 
SKEY 199 
-SKIP 91 
SKIP- 91 
LLIST 316,320, 321, 323 
SNEG 164. 167 
solve variables menu 213 
SORT 316. 317, 327 
sort list 317 
space, in EquationWriter 112 

SPHERE 307 
spherical polar coordinates 306. 30') 
sq uare root 116 
vi 116 
SST 348.352 
stack 13. 23.77. 125. 141. 112 

diagram 14 
flag 191 
interactive 91. 92. 132.112 
level 33. 125 
recovery 99. 130. 344 
roll 127 
unlimited 134 

standard 

display 78, 274 
environment 15 
keyboard 78 

START 60 
start 246. 247, 249 
starting and stopping 345 
STARLNEXT 250 
STARLSTEP 250 
status area 78, 99 
STEP 60 
step 249 
step-wise substitution m 
STO 48. 142. 149, 155. 158, 170. 173. 26'), 285, 

287. 303 
recovery 158 

STO- 164 

STO+ 164 
STO/ 164 
STO* 164 

-421-

STOF 191. 198 
STOKEYS 198 
stop 246, 247, 249 
storage arithmetic 164 
storage register 68 
-STR 43.314 
STREAM 317.320.355 
string 41 

counted 41 
object 88 

stripping tags 48 
STR- 180 
structure 55 

CASE 244 
FOR 246 
DO loop 253 
IF 241 
!FERR 349, 371 
local variable 263 



START 250 
program 52, 218, 229, 231, 235, 330, 358 
WHILE loop 255 

structure word, program 36, 60, 85, 229, 236 
structured programming 218, 232, 233, 345 
STWS 46,194 
SUB 44, 283, 284, 285, 301, 315 
subdirectory 148 
subexpression 54, 108, 121 

cursor 121 
level 55 
menu 121 

subroutine 233, 235, 270, 362 
substitution 73 
summation 248 
suspended program 345, 361 
SWAP l27, 128 
symbolic 

array 332 
calculator 3 
constant 66, 121. 194 
execution 61. 66 
fraction entry 114 
manipulation 212 
math 213 
mode 241 
object 72 

syntax 20, 84 
algebraic 52 

SYSEVAL 7, 73, 75 
system flag 
system halt 
system object 
tag 47 

189 
159, 173, 186 

31 

stripping 48 
-TAG 48 
tagged object 47, 383 

quoting 172 
TAIL 44, 315, 316 
temporary custom menu 
test 237 

201 

command 237, 239 
sequence 241. 253, 254, 255 

TEXT 78,275 
text entry 80 
text screen 78, 273, 278 
THEN 241 
then-sequence 241 
ticking clock 194 
TICKS 388 
timing execution 388 
TLI N E 292, 294 

TMENU 7,82,201,365 
Too Few Arguments 58. 226 
top-level function 55 
transfer, binary 194 
trap, error 256, 260 
TRN 164, 167, 299 
TVARS 156 
TYPE 31, 49, 57, 72 
type number 31 
type, object 31 
type-ahead 371 

TYPES 98 
typing 204 

aid key 206 
key 84,86 

lMATCH 55 
UBASE 240 
UFACT 240 
unconditional branch 241 
Undefined Name 63 
underflow 194. 262 
UNDO 87.99. 130. 190 
UnIt 

magnitude 49 
management 49 
object 49 

unlimited stack 134 
unquoted program 72 
untagged object 47 
UNTIL 254 
UPDIR 148. 155 
user 

annunciator 195 
flag 190, 238 
key action 195 
key assignment 195 
memory 67, 146 
mode 81, 109, 186, 195 

USER annunciator 195 

Subject Index 

user-defined function 112, 145,212.220.221, 

-422-

226,311 
User's Guide 8 
1 USR annunciator 195 
V 309 
-V2 39.309 
-V3 309 
value. object 31 
value, principal 194 
VAR memory 67 
VAR menu 143, 180, 200. 262 
variable 20 

changing contents 164 



Subject Index 

formal 69, 266 
global 50,67,68, 141, 142, 179,262,266, 

270, 361 
local 67,70, 132, 136, 1(>1, 179,221, 222, 

247, 262, 263, 266, 270, 347 
moving 159 
port 141, 167, 170, 172 

VARS 156, 158 
VEe 104 
vector 44, 297, 304 

column 304 
contravariant 304 
covarian t 305 
row 304,305 

vectored ENTER 88, 89, 195,206 
VERSION 6 
VIEW 134 
V- 39 
VTYPE 31, 57, 156 
WAIT 373 
where 119 
WHILE 253,255, 25(, 
-WID 101 
WID- WI 
wordsize 46 
Wrong Argument Count 324 
XLIB name 34,51,70, 181, 176, 196 

XROOT Ill, 117 
y-slicc plot 2R7 

l 

-423-



HP, 48 Insights 
I. Principles and Programming 

The HP 48G/ GX is the most powerful calculator 
ever developed. Along wnh ns extensive sym­
bolic and numeric mathematical functionalny 
including automated graphics, the HP 48 pro­
vides exceptional programming and customiza­
tion facilnies that make n applicable to a broad 
range of practical problems. The sheer extent 
of the HP 48's capabilnies do. however. make 
the calculator a challenge to learn and master. 

HP 48 Insights I is the first volume of a two-part series by Dr. William 
Wickes on the operation and application of the HP 48. This book con­
centrates on the undeMying unified principles of HP 48 operation. and 
the tools and techniques for programming the calculator. Special atten­
tion is given to object storage. display management. and customizatlon 
wnh key assignments. menus. and modes. All concepts are illustrated 
wnh specific examples. including over 100 practical example programs 
featuring programming techniques such as local variables, program 
structures, recursion, and the uses of lists and arrays. 

This HP 48G/ GX Edition is revised and extended to cover the new 
features and user interface of the HP 48G and HP 48GX calculators. 
Most of the material applies equally well to the HP 48S/ SX family. Part /I 
of HP 48 Insights will focus on the integrated systems of the HP 48, 
such as plotting, symbolic mathematics, and unit management. 

Chapter Headings: 

1. Introduction 1 
2. RPN Principles 19 
3. Objects and Execution 29 
4. Object Creation 77 
5. The HP 48 Stack 125 
6. Storing Objects 141 
7. Customization 189 
8. Problem Solving 211 
9. Programming 229 

10. Display Operations and Graphics 273 
11. Arrays a nd Lists 297 
12. Program Development 343 

ISBN 0-9625258-5-5 


