
The HP 48
Program.Iller's ToolKit

James Donnelly

The HP48

Programmer's ToolKit

James Donnelly

Copyright © James Donnelly 1990

All rights reserved. No part of this book may be reproduced,
transmitted, or stored in a retrieval system in any form or by
any process, electronic, mechanical, photocopying or means
yet to be invented, without specific prior written permission of
the author.

The software, this manual, and any examples contained herein
are provided "as is" and are subject to change without notice.
James Donnelly makes no warranty of any kind with regard to
this software or manual, including, but not limited to, the
implied warranties of merchantability and fitness for any
purpose. James Donnelly shall not be liable for any error or
for incidental or consequential damages in connection with
the furnishing, performance, or use of this software, manual,
or examples presented herein.

The owner of this book is granted a one- user, non -
commercial license to use the enclosed software, and may not
copy, distribute, or transfer the software under any
circumstances without specific prior written permission of the
author. Commercial software developers may apply for
licensing.

First Edition

First Printing, July 1990

Armstrong Publishing Company
3135 NW Ashwood Drive
Corvallis, OR 97330 USA

Acknowledgements

Special thanks go to Dan Allen, Scott Burke, Ray Depew,
Alonzo Gariepy, Wlodek A.C. Mier-Jedrzejowicz, Bob Moore,
Richard Nelson, Jake Schwartz, Eric L. Vogel, Frank Wales,
and Dennis York for their advice, ideas, support, and
encouragement.

The cover photograph was provided by the Hewlett-Packard
Company.

Contents

Getting Started 1
Additional Information
Installing the ToolKit 2
Removing the ToolKit 3
Example Programs 4

Character Set Catalog 5
Menu Label Builder 7
Flag Catalog 10

Viewing All Flag Settings 10
Viewing Flag Descriptions 11
Supplying User Flag Descriptions 11

Data Browser 13
Input Parameters 14
Output Parameters 15
Active Keys 16

Title Browser 22
Input Parameters 23
Output Parameters 24
Active Keys 25

Tool Library 26
Graphics 27
Set Utilities 28
Meta Objects 30
Temporary Memory 34
Command Index 37
Error Messages 39

Command Reference 40
Object Types 116
Character Codes 117
Character Translations 119
Flags 120
Alpha Keyboard 124

Getting Started

The HP 48 Programmer's Too/Kit is a collection of software tools
designed with the programmer in mind. These tools improve
program performance by combining some common, slow
operations into faster internal system languages and provide
additional capability in object manipulation not directly available
in the HP 48 command set.

There are seven main chapters and several reference tables in
this manual:

• Character Set Catalog describes an interactive character
set catalog.

• Menu Label Builder describes an interactive program for
building graphics objects for use in custom menus.

• Flag Catalog describes the interactive Flag Catalog.

• Data Browser and Title Browser describe two powerful
screen- oriented user interface utilities that may be used to
enhance the appearance of an application.

• Tool Library describes the new commands provided in the
Tool Library, including the meta-object concepts used by
some of the new commands.

• Command Reference describes the full syntax for each new
command in the Tool Library with examples.

• Additional chapters provide reference tables for object
types, the character set, and flags.

Additional Information
Part 5 of The HP 48 Owner's Manual discusses data transfer. The
documentation that comes with the Serial Interface Kit for an
IBM-compatible personal computer (HP 82208A) or an Apple
Macintosh computer (HP 82209A) may also be helpful.

Getting Started 1

The HP 48 Handbook by the same author contains complete
stack diagrams for all the HP 48 commands, further discussions
of graphics, menus, data transfer topics, and includes other
helpful information and reference tables.

Installing the ToolKit
The HP 48 Programmer's Too/Kit consists of two system
programs and four library objects that extend the built- in
command set. All objects must be downloaded in binary mode.

Name Type Lib Id Description

CSCAT System Program Character Set Catalog
LBLD System Program Menu Label Builder
FCLIB Library 775 Flag Catalog
TLLIB Library 776 Tool Library
TBLIB Library 777 Title Browser
DBLIB Library 778 Data Browser

Installing System Programs
The system programs CSCAT and LBLD are implemented in
system languages and must be downloaded to the HP 48 in
binary mode. They may be stored in any variable and evaluated
like any other program.

Note: When CSCAT and LBLD are on the stack, the copyright
message appears. The programs may not be edited. If you press
IEDITI or[!] while they are in level one, the HP 48 will take a very
long time to display the programs in the command line. Pressing
IENTERI thereafter will only result in a Syntax Error. To abort the
long display delay, just press IA TTNI.

2 Getting Started

Installing Library Objects
Libraries are referenced by a library# or a library identifier
(: port#: library#), depending on the command. The title of a
library may be displayed by pressing 151 (REVIEW! in the
LIBRARY menu.

Library objects only extend the command set when they are
stored in a port (O, 1, or 2) and attached to a directory in user
memory. To install a ToolKit library, perform the following:

• Download the library to the HP 48 in binary mode.

• Recall the library to the stack.

• Purge the variable that the library was stored in.

• Store the library object in a port, such as port o. For instance,
when the library object is in level one of the stack, execute
OSTO.

• Turn the calculator off, then on again. The calculator will
perform a system halt, which updates the system
configuration to recognize the new library. All ToolKit libraries
automatically attach themselves to the HOME directory.

Removing the ToolKit
To remove the Alpha Catalog and the Label Builder, just purge the
variable in which they are stored. To remove ToolKit libraries,
perform the following steps:

• Ensure that the library object to be purged does not appear
on the stack as Li br anJ nnn: • • • Either store the
library in a variable or execute NEWOB to create a unique
copy.

• The ToolKit libraries are attached to the HOME directory.
Switch to the HOME directory, enter the port-tagged
library number, such as : o: 775 and execute DETACH.

• Enter the library number as above and execute PURGE.

Getting Started 3

Example Programs
There are several example programs and program fragments in
this book. Each complete program is named and printed with a
size and checksum.

All characters in the programs are case - sensitive. The names of
commands are always uppercase. By convention, the names of
global variables are uppercase and of local variables are
lowercase.

While the command line entry of a program may be free form,
with the B keystroke being valid between words, graphics
objects must be entered exactly as shown, with no extra breaks in
the command line when entering the data.

If you type a program into the HP 48, use the BYTES command to
make sure the program in the calculator matches the version in
the book. For instance, the program « DROP SWAP » is 15
bytes long and has the checksum #5197h. The sizes for named
programs include the size of the program name. Named
programs may be found on the disk.

4 Getting Started

Character Set Catalog

The Character Set Catalog provides an interactive character set
catalog (see Character Codes) . To display the Character Set
Catalog, execute the system program CSCAT:

CHR HEX DEC DCT tlN A * fl '11 065 101 01000001 l3iiIJ
~ ~~ :~~ m nmm A
~ ~~ :~= m :mmr mz:i
F '16 070 106 01000110 A
~ ~~ :~~ u~ nmm liiiUJ

l::rnlllllllllllfJllllfJlmllll~

The display above shows eight characters at a time. Each
character is shown with its character code displayed in HEX,
DECimal, OCTal, and BINary modes. The right side of the display
shows the character in three additional forms:

• The character in the large (5x9) font.

• The character in the medium (5x7) font.

• Translated using the current TRANSIO setting. The TIO 1
label reflects the current TRANSIO setting.

The display above assumes the current TRANSIO setting is 1.
The display below shows the display with character codes 136-
143 displayed and TRANSIO set to 3:

Character Set Catalog

CHR HEX DEC DCT 81N a
~ H m ~n m&mr l3iiIJ
~ ==mm mmn oc * oc BC 1'10 i!l'I 10001100 mzJ + BD 1'11 i!lS 10001101 '-Ga
t =~ 1~~ m 1mmr IIii:ll

l::rnlllllllllllfJllllfJlmllll~

5

When the catalog is displayed, you can do the following:

• Press the arrow keys to move the pointer. The left shifted
arrow keys move a screen (8 characters) at a time. The
right shifted arrow keys move to character codes O or 255.

• Press the or menu keys to move the
pointer backwards or forwards 16 characters.

• Press the or menu keys to move the
pointer backwards or forwards 32 characters. For A-+Z,
@@~ia'affi!i yields lowercase a-+Z.

• Press the or menu keys to move the
pointer backwards or forwards 64 characters. For A-+Z,
@REl::~Ifl!ii yields control codes control -A-control - Z.

• Press IENTERI to return the character code to the stack as
an alpha-tagged character code, such as A: 65:

{ NOME)

By executing OBJ-+ on the result, the character and its
code are available as separate objects.

• Press IATTNI to end the application.

Note: The current TRANSIO setting is stored in the reserved
variable IOPAR. If this variable does not exist, CSCAT will create
IOPAR in the HOME directory with default values.

6 Character Set Catalog

Menu Label Builder

The Label Builder has been designed to facilitate the creation of
graphic menu key labels. It is used in conjunction with custom
menu definitions supplied to the MENU or TMENU commands
which may contain a 21x8 graphics object to define the menu
label.

Example: The following list contains a menu definition for four
keys. Each key is labeled with a graphics object, and the first key
has a different definition for the left and right shifts:

ELEC (225 bytes, checksum #9447h)
{

{

}

{

}

(

}

{

}

}

GROB 21 8 0000000000000101008282006444C0082820001010000000

{ " 10Q" "200Q" "500Q" }

GROB 21 8 OOOOOOOOAOOOOOAOOOOOAOOOCFBF7000AOOOOOAOOOOOAOOO

"CAPACITOR"

GROB 21 8 0000000040000041000045000F7510004500004100004000

"GROUHD"

GROB 218000000000000000750002150E77750002450000720000000
11 VCC 11

(NDHE)

4:
3:
2:
1:
A../'v -If- -ii•· -•SU --

Menu Label Builder 7

The Label Builder. The variable LBLD contains the Label Builder.
While primarily intended for creating graphic menu labels, the
Label Builder is also useful for creating smaller graphics objects
as well.

To start the Label Builder, execute LBLD:

HP 'II GRAPHIC MENU LR8EL 8UILDEll

111111111111111111111:
- --lilmmll

The cursor appears in the upper-left corner of the grid, and the
cursor coordinates are shown on the right side of the display.

While the grid is displayed, you can do the following:

• Press the arrow keys to move the cursor (wraparound is
enabled).

• Press I ENTER I to toggle the current state of a pixel.

• Press ES:a:~_iJ to return the subgrob defined by the
upper-left corner and the cursor to the stack.

• Press §llHS!l'J~IJ to return the menu key graphics object and
its inverse to the stack.

• Press IATTNI to end the label builder.

The second and fourth menu keys at the bottom of the display
show how the menu key would appear in its final form:

HP 'II GRAPHIC MENU Lfl8EL 8UILDEll

---mmlilmm:m

8 Menu Label Builder

The Label Builder returns a graphics object and its inverse to the
stack:

< HOME)

4:
3:
2: Inv: Graphic 21 x 8
1: Res= Grah~!i 21 x 8
llIDDElbil m:mom

These graphics objects are ready to supply to a custom menu
definition. The object returned to level 1 with the tag "Reg"
represents the second menu key from the left in the builder; the
level 2 object represents the fourth menu key.

The Label Builder may also be used to prepare smaller graphics
objects. For instance, to construct a small arrow, set the desired
pixels and place the cursor on the lower- right pixel:

HP 'II GRAPHIC MENU LUEL tulLDER

11111111111111111:
Press f@Sal'.#516 to return the smaller graphics object to the stack,
then IA TTNI to end the application. The graphics objects in levels
one and two contain the arrow:

Menu Label Builder

< HOME)

4:
3:
2: Inv: Graphic 5 x 5
1= Res= Gr~7;c 5 x 5
llIDDE:lbil m:mom

9

Flag Catalog

The Flag Catalog provides a rapid view of all the system flags
(-1 - -64) and the user flags (1 - 64). To display the Flag
Catalog, execute the command FCAT (~ ILIBRARYI EI~J:allial
mEn:::i;:c11n).

Viewing All Flag Settings
When the Flag Catalog starts, the first display shows all the
system flags:

System Flag Catalog m !SUC~CEC~C~C~C
'l"t' lU S 11 C i!& C l'I C 'Ii! C SD C SI C
3 c 11 s l! c i!i" c]5 c '13 c Sl c 5! c
'I C li! S i!D C i!I C l& S 'l'I C Si! C &a C
ssucncncvc~cs:1cnc
& S l '1 C i!i! C lU C ll C 'I& C S'I C &i! C
i"SliC~CllCMC~C~C~C
ISl&Ci!'ICli!C~C~C~C&'IC
lliillmilll!iB::ll!lmlm!Rl!ll!Iil

This display show all the system flags or user flags at once.
When all the flags are displayed, you can do the following:

10

• Press the arrow keys to move around the display. The
left - shifted arrow keys move to the boundaries, and the
right-shifted arrow keys move to the first or last flags.

• Press the ;:mrnummrn@ or 1:&HnE1i1i@ menu keys to set or clear the
indicated flag.

• Press the or U:J;f~.E:E l menu keys to view either the
system flags or user flags.

• Press the MtlS$Q@ menu key to display the flag
descriptions.

• Press faQ'IJ'l KEirn or (ATTN! to end the application.

Flag Catalog

Viewing Flag Descriptions
The ffP'.~$\J:i] key displays the flag descriptions for either the
system flags or user flags:

Syste~ Flag Catalog
+ l C PRINCIPAL SDLUTIDN

i! C SYM8DLIC CONSTANTS
ll C NUMERICAL RESULTS
'I C NDT USED
5 S WDRDSIZE l
Iii S WDRDSIZE i!
7 S WDRDSIZE 'I
I S WDRDSIZE I

Eillmillll!ilml!fmtlll:IBlllil!III

When the flag descriptions are displayed, you can do the
following:

• Press the arrow keys to move the pointer. The left - shifted
arrow keys move a screen at a time. The right- shifted
arrow keys move to the ends of the list.

• Press the m:rm~?E@M! or f;mH~Jarnxm menu keys to set or clear the
indicated flag.

• Press the or @Q_S~Ei menu keys to view either the
system flags or user flags .

• Press the menu key to display the flag
descriptions .

• Press I ENTER I to toggle the state of a flag. { /VO!)

• Press ;:;;Q:Qi$if:l'i?Mor (ATTNI to end the application.

Supplying User Flag Descriptions
When the user flag descriptions are displayed, the current path is
searched for the variable UFLAGS. If UFLAGS is a list containing
strings, the first two characters of each string will be examined for
a flag number, and the remainder of the string will be displayed
as the flag description.

Flag Catalog 11

The following list supplies definitions for the flags used by the
HP 82211A Solve Equation Library application card:

UFLAGS (107.5 bytes, checksum #7BABh)

{

}

II 60UN IT TYPE : 0=S I 1 =ENG LI SH II
11 6lUNITS USED: 0=YES l=N0 11

11 62PMT MODE : 0=END l=BEG 11

User Flag Catalog
57 C USER FLAG
51 C USER FLAG
5!1 C USER FLAG
'O C UNIT TYPE : O:SI l=ENGLISN

~&l C UNITS USED: O=YES l=ND
'~ C PMT MODE : O=END l=tEG
H C USER FLAG
&'I C USER FLAG

EillmillllfBll!limll:!Dllil!Ill

If UFLAGS does not contain a list, or the list does not contain a
valid string definition, UFLAGS will be ignored.

12 Flag Catalog

Data Browser

The Data Browser is a utility which provides an efficient interface
for examining and editing a series of objects.

The Data Browser appears to the user as a list of optionally­
labeled data with a movable pointer to indicate a choice:

~ ADDRESS LIST
Nairie: JOE SM ITH

~Addr: 123 ANVSTREET
City: CORVALLIS
St. : OR
Zip : 97330
Ph# : 503-555-1212 lmllDDl ___ lil!lill

In the display above, the pointer indicates the currently selected
item, and the arrows in the upper-left corner of the display
indicate that more data items reside above and below those
shown in the display. Each line of the display contains a label
(such as "Addr: ") and data (such as "123 ANYSTREET"). The
menu keys have been defined by the input parameters.

The input parameters to the Data Browser control the appearance
of the data and the options available to the user. For instance, by
omitting the title bar and specifying a small font, many data items
can be shown in the display at once:

Data Browser

i!l.'15
77.:li!
U.71

+!IB.'15
li!:l.!1!117
'l.i!l
lli!l.77
.lOO'ii!
7.!15 lmllDDl ___ lil!lill

13

t

Input Parameters
The input parameters to the Data Browser are four lists:

Level 4: { label list }
This list contains the label objects. Long labels will be
truncated to 25 characters. An empty list may be
supplied if no labels are desired.

Level 3: { data list }
This list contains the data objects, and must contain at
least one object. The data list and label list must be the
same length.

Level 2: { menu label list }
This list contains the objects which will be presented as
menu labels. If the label object is an empty string, the
menu label will be black and the menu key will generate
an error beep when pressed. If the label object is the
string "NULLKEY", the menu label will be white and the
menu key will generate an error beep when pressed. A
21x8 graphics object may be used for the key label
(see The Menu Label Builder) . An empty list is
acceptable, but the display will still show black labels.

Level 1: { font first item current item edit flag title }
The font is specified by a-real num~r: 1 for the small
font (3x5), or 2 for the medium font (5x7) . The real
number first item specifies the index of the first data
item displayed. The real number current item
specifies which data item will be pointed to by the
pointer. If first item specifies a row that would force
the last data item to appear above the bottom of the
display, the value is adjusted to place the last data item
at the bottom of the display. If the pointer is off­
screen relative to the first item, the data is positioned
to place the pointer in the-display. If the real number
edit flag is non-zero, the user may edit the data
items. If edit flag< o, no type checking will be
performed. The title is specified by a string. Long title
strings will be truncated to 19 characters. If an empty

14 Data Browser

string is supplied, the top of the display will be used to
present additional data and the arrows indicating data
beyond the boundaries of the display will not appear.

Output Parameters
The results from the Data Browser are either three or four items,
depending on the original state of the edit_flag:

Level 4: { data list }
This list contains the data objects (which may have
been edited). The data list will not be returned if
edit_flag was zero.

Level 3: { font first item current item edit flag title }
This list is similar to the-level 1 input list. The real
number first item ls the index in the data list of the first
data item displayed when the Data Browser terminated.
The real number current item is the index of the data
item at the pointer when the Data Browser terminated.
The font, edit_flag, and title are the same as the input
parameter.

Level 2: current item
The real number current item is the index of the data
item at the pointer when the Data Browser terminated.

Level 1: terminator key
The terminator_ key indicates how the user terminated
the Data Browser:

O: Zero is returned when the user presses~ .

1: One is returned when the user presses IENTERI.

- n: If the result is a negative number, the absolute
value indicates which menu key was pressed.

Data Browser 15

Active Keys
While the Data Browser is running, the following keys are active:

[I) [!) The arrow keys may be used to move the pointer.
Press ~ and an arrow key to move the pointer
one screen at a time. Press ~ and an arrow key
to move to the ends of the catalog.

~ IVISITI If a data item cannot fit within the display (indicated
by ...), the lv1s1rl key displays as much of the item
as will fit in the display, up to 154 characters.
Pressing IATTNI or IENTERI will return to the original
Data Browser display. If the data item fits in entirely
in the display, ~ IVISITI will generate an error
beep. See Viewing Large Data Items below.

~ IEDITI If the edit flag is non-zero, pressing ~!EDIT!
presents a line editor for the current data item. The
edit session can be aborted by pressing IATTNI, or
accepted by pressing IENTERI. The input supplied
by the user is checked for proper syntax to cont i rm
that a legitimate object results. See Editing Data
Items below.

(g] Pressing (g] produces a prompt for a search string.
The data list will be searched for a data item
containing the search string starting at the next item
and wrapping around if necessary. The search is
case- sensitive. See Searching for Data below.

;f:lglJJ4t!' Pressing a non - null menu key will terminate the
Data Browser, indicating which menu key was
pressed and the location of the pointer.

IENTERI Terminates the Data Browser, indicating the
location of the pointer.

IA TTNI Terminates the Data Browser.

16 Data Browser

Viewing Large Data Items. The Data Browser has a facility for
viewing data items that are too large to fit within a line on the
display. For example, consider the display below:

$ ADDRESS LIST
Harrie: JOHN DOE

-+Addr: 9876 W IHCHESTE ...
City: CORVALLIS
St. : OR
Zip : 97330
Phi : 503-555-1212 l:mlllDDl ___ B!lill

The current data item will not fit in the display, as indicated by the
ellipses (...)at the end of the line. Pressing~ IVISITI produces a
full - screen display showing up to 154 characters:

9876 WINCHESTER BLVD.

PRESS [ENTERJ TD CDNTINUE •••

Pressing (ATTNI or (ENTER I will return to the original Data Browser
display.

Editing Data Items. If the edit flag is non-zero, pressing
[5J (EDITI presents the command line editor:

PRG
< HUME >

The menu keys are identical to the command line editor, but the
stack is not available. User key definitions and HP 48 menus may
be used. The edit session can be aborted by pressing IATTNI, or
the new data can be accepted by pressing IENTERI. There are
two important points to consider about editing data items:

Data Browser 17

• The new data is checked for proper syntax, and must result
in a legitimate object. For instance, if the new data
represents a program, it must be syntactically correct.
String data objects must be surrounded by quotes.

• If edit flag is negative, no type- checking occurs. If the
results of the browser session are destined for a type­
dependent procedure, such as filling a numeric array, it
may be wise set edit_flag positive to check the user's input.

Searching for Data. Pressing ~ produces a prompt for a
search string:

PRG
< HOME)

Search for:

The menu keys are identical to the command line editor, but the
stack is not available. User key definitions and HP 48 menus may
be used. The search prompt can be aborted by pressing IATTNI,
or the search string can be accepted by pressing I ENTER I.

The search begins just past the current data item, and wraps
around if necessary. The search ends at the first data item found
that contains the search string. Labels are ignored during the
search.

18 Data Browser

Example: The "address list" example on the first page of this
chapter was illustrated using the following program:

NAMES (308 bytes, checksum #2C49h)

«
(

"Mbr#: II "Na.Me: II "Addr: II "City: II

"St. . II "Zip . II "Ph# : II "Date: II . .
}

{

47
"JOE SMITH"
"123 ANYSTREET"
"CORVALLIS"
"OR"
97330
"503-555-1212"
11. 241989

~ _,
{ "ADD" "DEL" 1111 1111 1111 "QUIT" }

{ 2 2 3 1 II ADDRESS LIST" }

STD DBR
;:-..

Note that in this example, the first row has been set to two and
current row has been set to three, so that the name appears first
at the top of the display and the pointer is set to the address line.

Data Browser 19

Example: The program LUNCH on the next page illustrates a
small application that uses the Data Browser and four Tool Library
commands: EXTRACT, NXTOB, PRVOB, and REPLACE.

Select Your Lunch:
~course1: Cheeseburger
Course2: Fries
Fruit : Orange
Dessert: Ice Cream
Drink : Cola

While the program LUNCH is running, the .EUi:iMLJ and LHEK1'EW
keys may be used to change the selection for each of five
categories. For instance, pressing : ~i;:-ga;.J with the pointer on
the "Fruit" line selects the next available fruit selection:

Select Your Lunch:
Course1: Cheeseburger
Course2: Fries

~Fruit : Apple
Dessert: Ice Cream
Drink : Cola

The program is terminated by pressing either Kllltll 'lJtM, IENTERI, or
IA TTNI. The selections are returned in a list:

20

< HOME >
1: { "Steak" "Salad"

11 0ran9e 11

11 Ice Crear11 11

11 Coff ee 11
}

lirllDIDml:Dm:mthrnD:D

Data Browser

LUNCH (733.5 bytes, checksum #C4ACh)
«

~·

{

}

{

}

{ "Cheeseburger" "Steak" "Chicken" "Hot Dog" }
{ "Fries" "Salad" "Baked Beans" "Corn" }
{ "Orange" "Apple" "Banana" "Pear" }
{ "Ice Crear~" "Yogurt" "Cookies" }
{ "Cola" "Coffee" "Milk" "Water" }

"Course1: " "Course2: " "Dessert : "
"Fruit " "Drink : "

OVER LIST~ 1 EXTRACT ~LIST 1
~ Choices Labels Lunch Running

~·

{ 2 1 1 0 "Select Your Lunch: " }
~JHILE Running
REPEAT

Labels Lunch
{

"PREV" "MEXT" "MIJLLKEY
"MIJLLKEY "~llJLLKEY" "QUIT"

}

4 ROLL DBR
IF

DUP -6 SAME OVER 0 ~ OR
THEM

3 DROPM Lunch 0 'Running' STO
ELSE

Lunch 3 PICK GET Choices 4 ROLL GET
OVER 4 ROLL
IF -1 SAME THEM PRVOB ELSE MXTOB EMD
Lunch 3 ROLLD REPLACE 'Lunch' STO

mo
EMD

Data Browser 21

Title Browser

The Title Browser is a utility which provides an efficient method
for presenting a series of names or choices to the user with a
definable set of menu keys.

The Title Browser appears to the user as three columns of titles
with a movable underscore to indicate a choice:

Choose a elanet:
MEBCU8Y m=t:U-Mtlal:M •am Mi:i•••a=•••nu••:t•

MlllCl:ll-M:l:i:llll:IWMQllll1 ..

In the display above, there are nine choices available. If there are
more than fifteen choices, the title bar will be changed:

The display above shows the order in which the choices are
displayed from the input list. The arrows in the upper-left corner
of the display indicate that more data items reside above and
below those shown in the display.

22 Tltle Browser

Input Parameters
The input parameters to the Title Browser are three lists:

Level 3: < data list }
This list contains the objects which will be presented as
the data. The objects will be converted to a string and
centered within the highlighted screen areas. The list
must contain at least one object.

Level 2: < menu label list }
This list contains the objects which will be presented as
menu labels. If the label object is an empty string the
menu label will be black and the menu key will generate
an error beep when pressed. If the label object is the
string •NULLKEY" the menu label wUI be white and the
menu key will generate an error beep when pressed. A
21x8 graphics object may will be used for the key label
(see Menu Label Builder). An empty list is acceptable,
but the display will still show black labels.

Level 1: < current item first row title }
The real number current_item specifies the index in the
data list indicated by the underscore. The real number
first_row specifies the first row of data elements to
appear in the display. If first row specifies a row that
would force the last row of data to appear above the
bottom of the display, the value is adjusted to place the
last row of data at the bottom of the display. If the
underscore is off-screen relative to the first_row, the
data is positioned to place the pointer in the display.
The title is specified by a string. Long titles will be
truncated to 21 characters. If there are more then 15
data items, only 20 characters will be displayed, in
order to make room for the arrows.

Title Browser 23

Output Parameters
The results from the Title Browser are three items:

Level 3: { current item1 title }
This list 1S similar to the level 1 input list. The real
number current item is the index in the data list of the
underscored data item when the Title Browser
terminated. The title is the same as the Input
parameter.

Level 2: current item
The recif number current item is the index In the data
list of the underscored- data item when the Title
Browser terminated.

Level 1: terminator key

24

The terminator_ key indicates how the user terminated
the Title Browser:

0: Zero is returned when the user presses ~-

1: One is returned when the user presses IENTERI.

- n: If the result is a negative number, the absolute
value indicates which menu key was pressed.

T111e Browser

Active Keys
While the Title Browser is running, the following keys are active:

@ltEUUE!

IENTERI

Example

The arrow keys may be used to move the
underscore. Press ~ 00 or ~ [!] to
move the underscore one screen at a time.
Press ~ 00 or ~ [!] to move to the ends
of the catalog.

Pressing a non - null menu key will terminate
the Title Browser, indicating which menu key
was pressed and which item was
underscored.

Terminates the Title Browser with a 1,
Indicating which item was underscored.

Terminates the Title Browser with a o,
indicating which item was underscored.

The "planets" example at the beginning of this chapter was
illustrated using the following program:

PLANETS (223 bytes, checksum #4A3Fh):

{

}

"MEF.:CURY" "VEMUS" "EARTH" "MARS" "SATURM"
" . .JUPITER" "URAMUS" "MEPTUME" "PLUTO"

{ "SUM" "MOOM" "TEMP" "DIST" "OF.BIT" "G!UIT")
{ 1 1 " Choos e .::i planet: " }
TBR

TiUe Browser 25

Tool Library

The Tool Library provides 74 new commands that extend the
built - in command set of the HP 48. The new commands fall into
the following categories (see Command Index):

26

• Array Operations. Ten commands facilitate the addition,
deletion, exchange, or replacement of rows and columns in
an array.

• Graphics. Eight commands provide pixel manipulation for
graphics objects on the stack, coordinate conversions, and
graphics object rotation .

• List Manipulation. Twelve commands perform list
decomposition, manipulation, and sorting .

• Meta-Object Utilities. Fourteen commands provide tools
for manipulating meta - objects.

• Set Utilities. Six commands manipulate lists as sets .

• Stack Manipulation. Seven commands perform stack
movement and sorting.

• String Manipulation. Twenty- two commands perform
extensive string manipulations.

• Other Commands. Two commands calculate the day of the
week or the day of the year given a date. Two commands
extract variable names from a program or equation and
search user memory for variables by name or type. The
XTIME command calculates execution times.

Tool Ubrary

Graphics
The graphics commands in the Tool Library use pixel coordinates
to identify a pixel in a graphics object. A pixel coordinate consists
of a list containing two binary integers, {#co/ #row}.

The upper-left pixel of a graphics object is represented by
{ #0 #0 } . Graphics objects placed into or extracted from PICT
with the built-in commands GOA, GXOR, SUB, or REPL are
located by their upper-left corner. Similarly, the Tool Library
commands PXOFF, PXON, and PX? assume that the upper-left
pixel of a graphics object is { #0 #0 }.

{ 1010 } µ HP 48 Display Coordinates { 113010 }

{ #col #row } D

{ #0 #63} ~---------~r { #130 #63}

The built-in commands PX-+C and C-+PX convert between user
coordinates, such as (x,y), and pixel coordinates. The Tool
Library commands PX-+R and R-+PX simplify the translation
between pixel coordinates and loop indices or calculation results.

Example: The following program fragment (64.5 bytes,
checksum #6331h) draws a dotted line in PICT. The command
R-+PX is used to form the pixel coordinate for PIXON.

~:

0 62 FOR i i 2 * i R~PX PIXON 2 STEP C } PVIEW

Tool Library

Set Utilities
The set utilities assume (but do not require) that a set is defined
as a list of unique objects. In combination with other commands,
the set utilities can simplify some otherwise complicated
procedures.

A set on the stack may be as simple as an empty list, or a list of
many different objects. The command -+SET may be used to
ensure that all the objects in a set are unique. The command
ADJOIN adds an object to a list only if the object does not appear
in the list.

The commands DIFF, INTERSECT, SDIFF, and UNION perform
set operations or comparisons.

Example: Variables From Equations. The following program
fragment (49 bytes, checksum #81A2h) uses the set utility
UNION and the command EQNVARS to return a list of all the
variables used by a list of equations:

«
OBJ~ MREVERSE C }
1 ROT
START

SWAP EQNVARS DROP UNION
NEXT

In the example above, the UNION command is used to ensure
that the variables found are added to the output list only if they
are unique. The MREVERSE command is used here to reverse
the order of the equations on the stack so the variables in the
output list appear in the left-to-right order that you would read
them in the input list.

28 Tool Ubrary

Example: Finding Variables Containing Real Numbers.
A complex directory structure can lead to confusion: where is a
variable X which does not contain a real number? The following
program fragment (43.5 bytes, checksum #5584h) uses the set
utility INTERSECT and the command VFIND to return a list of all
the variables named X that contain a real number:

'X' VFIND +LIST 0 VFIND +LIST INTERSECT

In the example above, each call to the VFIND command returns a
list of paths. The INTERSECT command is used to ensure that
only variables that do contain real numbers are returned.

Example: Finding Variables NOT Containing Real Numbers.
The following program fragment (43.5 bytes, checksum #96A9h)
uses the set utility DIFF and the command VFIND to return a list
of all the variables named X that do not contain a real number:

'*:
'X' VFIND +LIST 0 VFI ND +LIST DIFF

»

In the example above, each call to the VFIND command returns a
list of paths. The DIFF command is used to ensure that only
variables that do not contain real numbers are returned.

Tool Library 29

Meta- Objects
The term meta - object refers to a group of objects and their
count that resides on the stack. Since stack operations are by
nature very efficient, there will be instances when manipulating
groups objects on the stack is more efficient than keeping the
objects in lists. The meta - object utilities presented below
condense the stack operations into efficient system - code.

The following display shows a meta - object consisting of three
objects and their count:

(HUME :t

The term meta-stack refers to a group of objects on the stack,
some of which may be meta-objects. The term position is used
instead of level when discussing meta - stacks, because a meta -
object actually occupies multiple stack levels.

The following meta - stack consists of the complex number (3,4)
in position 1, and meta- objects in positions 2 and 3:

"MARS" "JUPITER" 2 2 19 69 3 (3,4)

Position 3 Position 2 Position 1

Notation
To simplify discussions about meta-objects, the following
notation is presented. The count is always assumed to be below
the elements on the stack.

Stack Notation. The following symbols are used to indicate
objects and meta - objects on the stack, where the right - most
element is at the bottom of the stack:

30 Tool Ubrary

< > An empty meta - object on the stack
(which is just a 0, because the meta -
object must have a count).

< ... > An arbitrary meta - object on the stack.

< obj1 obfa obb > A meta - object composed of three
objects.

< ... > obj An object in level 1 and a meta - object
beginning at level 2.

< obj ... > A meta - object on the stack, with obj at
the head. The head is the element
farthest from the count. This is
equivalent to the decomposition of the
list {obj ... } .

< ... obj > A meta-object on the stack, with obj at
the tail. The tail is the element closest to
the count. This is equivalent to the
decomposition of the list { ... obj}.

< meta2 > < meta1 > Two meta - objects on the meta - stack.

Utility Names. The meta - object command names start with M,
for Meta - object, and use the following naming convention:

A Refers to the addition of an object to a meta - object.

D Refers to the deletion of an object from a meta - object.

M Refers to a meta - object.

L Refers to a list.

H Refers to the head of a meta - object.

T Refers to the tail of a meta - object.

Z Refers to an empty meta - object.

2 Refers to the meta - object in position 2.

-+ The phrase "to" (converting to another form).

Tool Library 31

Utilities
To establish an empty meta-object on the stack, just place a
zero in level 1. To convert a list or vector into a meta-object,
execute OBJ--+. To convert a meta - object back to a list, execute
--+LIST. To convert a meta-object back to a vector, execute
--+ARRY.

The meta - object utilities, described in the command reference,
consist of the following commands:

MAH

MAH2

MAM2

MAT

MAT2

MOH

MDH2

MDT

MDT2

ML-+M

MM--+L

MR EV ERSE

MSWAP

MZ2

Adels an object to the head of a meta -obj in position 1

Adels an object to the head of a meta -obj in position 2

Concatenates two meta -objs

Adds an object to the tail of a meta -obj in position 1

Adels an object to the tail of a meta -obj in position 2

Extracts an element from the head of a meta -obj in pos. 1

Extracts an element from the head of a meta - obj in pos. 2

Extracts an element from the tail of a meta-obj in pos. 1

Extracts an element from the tail of a meta-obj in pos. 2

Converts lists in positions 1 and 2 into meta-objs

Converts meta-objs in positions 1and2 into lists

Reverses the order of the objects in a meta -obj

Swaps the meta -objs in positions 1 and 2

Places an empty meta-obj in meta-stack position 2

Other commands in the Tool Library that accept or return
parameters in the form of meta - objects are:

EXTRACT

LS ORT

OS ORT

VFIND

-+WORDS

32

Returns the mth element from n lists

Sorts a series of n lists based on the mth element

Sorts a series of objects

Finds variables in user memory

Separates a string into individual words

Tool Ubrary

Example: Testing Variables. If the variables used by a program
or equation depend upon the initial conditions of certain
variables, a program to show which variables exist in the current
path may be helpful.

The following program expects an equation or program as input
and returns lists indicating which global variables are defined and
undefined. The program uses the meta-object utilities MZ2,
MDT, MAH, MAH2, and MM-+L The undefined variables are kept
in position 1, and the defined variables are moved to the meta­
object in position 2.

ESCAN (161 bytes, checksum #885Dh)
«

EQNVARS DROP DTAG
OBJ'*
IF DUP THEt~

MZ2 DUP 1 SWAP
START

MDT DUP VTYPE
IF -1 SAME
TH Et~

MAH
ELSE

MAH2
END

t~EXT MtHL
ELSE

DROP
() {)

Et·m
"Undefined" '*TAG SWAP
"Defined" '*TAG

Tool Library

Get global variables

Explode list for count

Process if there are some global vars

Does variable exist?

If nonexistent,

and add to ·undefined" meta-obj.

If exists, add to "defined" meta-obj.

Convert meta-obs to lists.

If there were no global variables,

return two empty lists.

Add tags.

33

Temporary Memory
A large part of the motivation for using meta - objects has to do
with the use of temporary memory in the HP 48. The stack in the
HP 48 is actually a stack of pointers which refer to objects
elsewhere in memory. Temporary memory is the calculator's
"scratchpad". All objects that are not stored in a port or in a user
variable reside in temporary memory. Many commands require
temporary memory to construct intermediate objects or new
objects returned as results to the stack.

Use of Temporary Memory
To understand temporary memory a little more, consider what
happens when two math operations are performed. Enter the
numbers 1.5 and 2.6 on the stack. These numbers now reside in
temporary memory, referred to by pointers on the stack. When
the numbers are added, the result, 4.1, is a number in temporary
memory referenced by a pointer in level 1 of the stack. The
objects 1.5 and 2.6 remain in temporary memory, referenced by
pointers that point to the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the
stack refers to the object 6.9 in temporary memory. The Last
Arguments pointers now refer to the objects 2.8 and 4.1, and the
objects 1.5 and 2.6 are no longer referenced.

Garbage Collection
From time to time the HP 48 will "hesitate" during an operation.
This hesitation is usually caused by the removal of objects in
temporary memory which are no longer being used. Objects
which are no longer referenced continue to accumulate in
temporary memory until memory has been filled. When memory
is full, the calculator scans the objects in temporary memory,
deleting those without references to them. This process, known
as "garbage collection", is similar in concept to garbage collection
in LISP.

A large number of pointers on the stack that point to temporary

34 Tool Library

memory can slow down the garbage collection process to an
uncomfortable degree. This occurs when there are a large
number of objects on the stack, or an object has been extracted
from a large list. List operations can be optimized by storing the
lists in global variables, effectively moving the operations from
temporary memory to user memory.

The MEM command returns the amount of available memory,
forcing an initial garbage collection to return an accurate result. It
may be helpful to insert the sequence MEM DROP to force
garbage collection prior to speed - sensitive program sequences.

The NEWOB Command
The command NEWOB may be used to create a new copy of an
object in temporary memory, whose only reference is on the
stack. In general, the system will perform an automatic NEWOB
where it makes sense. For instance, if you recall the contents of a
variable to the stack and press IEDITI , the object will be copied to
temporary memory before editing begins. There are three
situations in which NEWOB can be used explicitly for better
control of temporary memory usage:

• NEWOB "frees" an object that was extracted from a list.
Consider the following program:

« { "AB " " CD" "EF") 2 GET »

After executing this program, level 1 of the stack contains a
pointer into the list, which still resides in temporary memory.
Executing NEWOB now would create the unique object
"AB" in temporary memory, and release the list for garbage
collection. Note: Set the Last Arguments flag (-55) to
prevent the list from being referenced as one of the GET
command's arguments.

Tool Library 35

36

• Recalling an object to the stack places a pointer to the
object on the stack. In the case of backup objects in a port,
which consist of an object, name, and checksum combined
into a single object, recalling it to the stack places a pointer
to the object within the backup object on the stack. This is
why the system does not do an automatic NEWOB. To
purge a backup object from a port while retaining a copy in
temporary memory, recall it and execute NEWOB. Then the
backup object may be purged because there are no
references to it.

• The commands PXON and PXOFF in the Tool Library
modify the graphics object directly without creating a copy.
If there are several pointers on the stack to a graphics
object modified by PXON or PXOFF, each of those pointers
will point to the changed graphics object in memory. The
NEWOB command may be used in this situation to ensure
there are no other references to the graphics object being
changed.

Tool Library

Command Index
This index lists the commands in the Tool Library, grouped into
subject areas. Some commands or functions appear more than
once.

ARRAY OPERATIONS

DELCOL
DELROW
EX COL
EX ROW
GETCOL
GETROW
INSCOL
INSROW
PUTCOL
PUT ROW

GRAPHICS

PX+
PX­
PXOFF
PXON
PX?
PX-+R
ROTATE
R-+PX

Deletes a column from an array
Deletes a row from an array
Exchanges two columns in an array
Exchanges two rows in an array
Extracts a column from an array
Extracts a row from an array
Inserts a column into an array
Inserts a row into an array
Replaces a column in an array
Replaces a row in an array

Adds two graphics pixel coordinates
Subtracts two graphics pixel coordinates
Oears a pixel in an arbitrary graphics object
Sets a pixel in an arbitrary graphics object
Tests a pixel in an arbitrary graphics object
Converts pixel coordinates into two real numbers
Rotates a graphics object
Converts two real numbers into pixel coordinates

LIST MANIPULATION

CAR
CDR
CUT
EXTRACT
LS ORT
NXTOB
PRVOB
SPLIT
REPLACE
REVERSE
ROTATE
-+SET

Tool Library

Returns the first object of a list
Returns a list minus its first object
Splits a list into the first and remaining objects
Returns the mth element from each of a series of lists
Sorts a series of lists based on the mth element
Returns the next choice from a list of choices
Returns the previous choice from a list of choices
Splits a list into two lists
Replaces all occurrences of an object in a list
Reverses the order of objects in a list
Rotates the objects in a list
Removes duplicate objects from a list

37

META-OBJECT UTILITIES

MAH
MAH2
MAM2
MAT
MAT2
MOH
MDH2
MDT
MDT2
ML-+M
MM-+L
MREVERSE
MSWAP
MZ2

Adds an object to the head of a meta - obj in position 1
Adds an object to the head of a meta-obj in position 2
Concatenates two meta-objs
Adds an object to the tail of a meta -obj in position 1
Adds an object to the tail of a meta -obj in position 2
Extracts an element from the head of a meta -obj in pos. 1
Extracts an element from the head of a meta-obj in pos. 2
Extracts an element from the tail of a meta -obj in pos. 1
Extracts an element from the tail of a meta -obj in pos. 2
Converts in lists positions 1 and 2 into meta-objs
Converts meta-obs in positions 1and2 into lists
Reverses the order of the objects in a meta-obj
Swaps the meta-objs in positions 1and2
Places an empty meta-obj in meta-stack position 2

SET UTILITIES

ADJOIN
DIFF
INTERSECT
SDIFF
-+SET
UNION

Adds an object to a list if it is unique
Returns the set difference of two lists
Returns the set intersection between two lists
Returns the set syrrrnetric difference of two lists
Removes duplicate objects from a list
Returns the set union of two lists

STACK MANIPULATION
KEEP
MREVERSE
NDUP
QSORT
SALL
SR LLD
SXCH

38

Keeps the bottom n objects on the stack
Reverses the order of the first n stack objects
Creates n copies of an object
Sorts n objects on the stack
Rotates n objects on the stack up m times
Rotates n objects on the stack down m times
Exchanges objects at levels m and n

Tool Library

STRING MANIPULATION

CAR
CDR
CUT

- ICAPS
LCASE
LTRIM
PUTCHA
REPLACE
REVERSE
ROTATE
RPTSTR
RTRIM
SPLIT
-+STDSTR
STRCON
STRCTR
SUBNUM
-+TIO
TIO-+
TRIM
UCASE
-+WORDS

Returns the first character of a string
Returns a string minus its first character
Splits a string into the first and remaining characters
Converts the words in a string to initial caps
Converts the characters in a string to lowercase
Removes leading spaces and tabs from a string
Places character code n in a string
Replaces all occurrences of a substring in a string
Reverses the order of characters in a string
Rotates the characters in a string
Qeates a string of n substrings
Removes trailing spaces and tabs from a string
Divides a string into two strings
Converts an object to a string in standard display mode
Rapid creation of new character strings
Centers a string in a specified number of spaces
Returns the character code of a string's nth character
Converts a string to its translated form for 1/0
Converts a string from its translated form for 1/0
Removes leading and trailing spaces and tabs from a string
Converts the characters in a string to uppercase

· Separates a string into individual words

OTHER COMMANDS

Returns the day of the week given a date
Returns the day of the year given a date
Returns a list of global variables in an equation or program

DOW
DOY
EQNVARS
VFIND
XTIME

Find all occurrences of a variable or object type in user memory
Calculates execution times

Error Messages
The Tool Library contains four new error messages:

Hex Dec Error Message

30801 198657 Invalid Pas 1 Meta-Obj
30802 198658 Invalid Pas 2 Meta -Obj
30803 198659 Empty Meta - Obj
30804 198660 Inconsistent Data

Tool Library 39

Command Reference

This command reference lists the stack diagrams for each of the
commands in the Tool Library. Each entry lists the name,
description, and stack diagrams. An example is provided to show
how each command works.

NAME
Input Output

Level3 Level2 Level1 -+ Level3 Level2 Level1

The following table lists the terms used in the stack diagrams. Note
that system modes may affect the interpretation of input parameters
or the results of some functions.

Term Description
obj Any object
x or y Real number
(x,y) Complex number
z Real or complex number
morn Positive integer real number (rounded if non - integer)
#nor #m Binary integer
"string" Character string
"chr" Character string containing only one character
{list} List of objects
grob Graphics object
{ #X #y} Pixel coordinates
date Date in current date format
meta Meta-object (see Meta-Objects)
type Object type (see Object Types)
[vector) Real or complex vector
[[matrix)) Real or complex matrix
'global' Global name

T/F Test result: O (false) or non-zero (true)

Meta- object utilities are described with a notation presented
in Meta - Objects.

40 Command Reference

ADJOIN XL ! B &'03 ODO,? 776 D

Adds an object to a list if the object is not a member of the list.

I ADJOIN
{list1} obj - {list2}

Examples:

{ 11 22 33 } 33 - { 11 22 33 }

{ 11 22 33 } 44 - { 11 22 33 44 }

Related Commands: DIFF, INTERSECT, SDIFF, -SET,
UNION

Command Reference 41

CAR)(J.-1 B So3 too
.)

The command CAR may be used to extract the first element of
a list or the first character from a string. When a list object is
extracted, a NEWOB is performed to free the element from the
list (see Temporary Memory).

CAR -"string1 • - "string2"

{ } - { }
{obj 1 .. . obj"} - obj 1

Examples:

"ABCD" - " A"

{3'382} -

Related Commands: CDR, CUT, EXTRACT, NXTOB, PRVOB,
SPLIT, REPLACE, REVERSE, ROTATE, -SET

42 Command Reference

CDR XLtB $032..00J 7 76 2,

The command CDR may be used to remove the first object
from a list or the first character from a string.

CDR

Examples:

-+
"string 1 • -+

{ } -+
{obj, ... obj 0 } -+

"string2"

{ }
{obb ... obj0 }

"ABCD" -+ "BCD"

{ 3 9 8 2 } -+ { 9 8 2 }

Related Commands: CAR, CUT, EXTRACT, NXTOB, PRVOB,
SPLIT, REPLACE, REVERSE, ROTATE, -+SET

Command Reference 43

CUT
The command CUT may be used to split a list or string into the
first and remaining components.

When a list object is extracted, a NEWOB is performed to free
the element from the list (see Temporary Memory).

CUT

Examples:

-+
'string1 • -+

{ } -+
{obj 1 ••• objn} -+

'string2 • 'chr'
{ } { }
{obj2 .•• objn} obj 1

"ABCD" -+ "BCD" "A"

{ 3 982 } -+ {98 2 } 3

Related Commands: CAR, CDR, EXTRACT, NXTOB, PRVOB,
SPLIT, REPLACE, REVERSE, ROTATE, -+SET

44 Command Reference

DELCOL
The command DELCOL may be used to delete a column from
a vector or matrix. The vector or matrix must have at least two
columns.

DELCOL
[vector 1] n -+ [vector2]

[[matrix1]] n -+ [[matrix2]]

Examples:

[3 9 8 2]

[[11 2 2 3 3]
44 5 5 66]]

3 -+

-+

[3 9 2]

[[11 33]
[44 66]]

Related Commands: DELROW, EXCOL, EXROW, GETCOL,
GETROW, INSCOL, INSROW, PUTCOL, PUTROW

Command Reference 45

DELROW X l 1!3 So3 S-6o 716 S-
-'

The command DELROW may be used to delete a row from a
matrix. The matrix must have at least two rows.

I DELROW
[[matrix1]] n - [[matrix2])

Example:

[[11 22 33]
44 55 66]
77 88 99]]

2 -

[[11 22 33]
[77 88 99]]

Related Commands: DELCOL, EXCOL, EXROW, GETCOL,
GETROW, INSCOL, INSROW, PUTCOL, PUTROW

46 Command Reference

7 7 t. G

DIFF
Returns the set difference of two lists.

DIFF

Examples:

{1234}{56)-+ {1234)

{1234){345)-+ {12)

Related Commands: ADJOIN, INTERSECT, SDIFF, -+SET,
UNION

'1 w hat /sin fhe -f/V'sf~ <;et .,._,).,;ch isn' f 10

-f-/,, e s e <:o,, d_ set ~

Command Reference 47

7 7 6 7
DOW
Returns the day of the week given a date in the current date
format. The days are numbered starting with Monday= 1,
Tuesday=2, etc. The earliest valid date for this function is
October 15, 1582.

'DOW date -+ n

Examples:

5. 181957 -+ 6

3. 2 3 1981 -+ 1

Related Command: DOY

48 Command Reference

DOY
Returns the day of the year given a date in the current date
format. The earliest valid date for this function is January 1,
1583.

I DOV
date -+ n

Examples:

5. 181957 -+ 138

3. 231981 -+ 82

Related Command: DOW

Command Reference 49

EQNVARS
7 76 r

Given a program or equation, EQNVARS returns lists of global
and local variables used in the program or equation. If the
input to EQNVARS is a global name, the contents of the name
must contain an equation or program, and that object will be
scanned for variables.

EQNVARS
«program» -+ Global:{ names} Local:{ names}

'equation' -+ Global:{ names} Local:{ names}

'name' -+ Global :{ names} Local:{ names}

Examples:

1 8*4 1
-+ Global: {) Local: { }

'R=·f (i<"2+'l" 2) ' -+ Gl obal: { R X Y } Local: {

« ~ x y « x 2 A y 2 A + l 'R ' STO » » -+

Global: { R } Local: { x y }

Note: The built- in Solver in the HP 48 performs a recursive
search through variables to find named programs or
equations and adds variables found in those objects to the
Solve menu. EQNVARS only searches the program or
equation itself. Therefore the variables returned by EQNVARS
may be a subset of the variables displayed by the Solve menu.

50 Command Reference

7 7{;, / 0

EX COL
Exchanges two columns in an array.

EX COL
[vector 1] col 1 col2 -

[(matrix1]] col 1 col2 -

Examples:

[vector2]

(matrix2]]

[12 3 4] 2 3 - [1324]

[[1 2] [3 4]] 1 2 - [[2 1] [4 3]]

Related Commands: DELCOL, DELROW, EXROW, GETCOL,
GETROW, INSCOL, INSROW, PUTCOL, PUTROW

Command Reference 51

7 71., I(
EX ROW
Exchanges two rows in an array.

EX ROW

Example:

[[1 2] [3 4]] 1 2 -+ [[3 4] [1 2]]

Related Commands: DELCOL, DELROW, EXCOL, GETCOL,
GETROW, INSCOL, INSROW, PUTCOL, PUTROW

52 Command Reference

7/6 /?_

EXTRACT
The command EXTRACT may be used to return the mth
element from each of a series of n lists. The input and result
are formed as meta- objects. A NEWOB is performed to free
each element from the list (see Temporary Memory).

EXTRACT
{list1} ••. {list"} n obj-number -+ obj1 •• • obj" n

Example:

{ 3 91 } { 1 78 } { 8 12 } 3 2 -+ 91 78 12 3

Related Commands: LSORT, MREVERSE

Command Reference 53

GET COL
77 6 /"3

Returns a column from an array as a matrix consisting of 1 -
element rows.

GETCOL
(vector) col -+ ((column data]]

([matrix]] col -+ ((column data)]

Examples:

[1 2 3] 2 -+ [[2]]

[[1 2 3] [4 5 6]] 2 -+ [[2] [5]]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,
GETROW, INSCOL, INSROW, PUTCOL, PUTROW

54 Command Reference

GET ROW
7 76 1 '1

Returns a row from an array as a vector.

GE TROW
[vector) row -+ (row data]

[[matrix)] row -+ [row data]

Examples:

[123] 1-+ [12 3]

[[1 2 3] [4 5 6]] 2 -+ [456]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,
GETCOL, INSCOL, INSROW, PUTCOL, PUTROW

Command Reference 55

ICAPS
Converts the first character of each word in a string to
uppercase, and the remaining characters to lowercase. The
separation characters are any character code ~30, 32, and
160.

I ICAPS
"string1 • -+ "string2"

The case conversion supports the ISO 8859-1 character set
in the following ranges:

Examples:

Lowercase

61h-7Ah +--+

EOh - F6h +--+

F8h - FEh +--+

Uppercase

41h-5Ah
COh-D6h
D8h-DEh

"JOHM SMITH" -+ ".John Sr'1i th"

"saMple sentence" -+ "Sar-·1ple Sentence"

Related Commands: LCASE, UCASE

56 Command Reference

77b /(;.

INSCOL
The command INSCOL may be used to insert a column into
an array. The column number specifies which column will be
zero-filled, and may be one greater than the number of
columns in the array.

INSCOL
[vector1] n - [vector2]

[[matrix1]] n - [[matrix2]]

Examples:

[3 9 8 2] 3 - [3 9 0 8 2]

[(9,4) (8,3)] 3 - [(9, 4) (8 , 3) (0,0)]

[[11 22 -=:>-=:>
~·._,] [[11 0 22 -:.i.i:i ._,._,]

44 55 66] 2 - [44 0 55 66]

77 88 99]] [77 0 88 99]]

Related Commands: DELCOL, DELROW, EXCOL, EX ROW,
GETCOL, GETROW, INSROW, PUTCOL, PUTROW

Command Reference 57

77 6 17
INSROW
The command INSROW may be used to insert a row into an
array. If the input is a vector (one-dimensional), the result will
be a matrix (two-dimensional). The row number specifies
which column will be zero-filled, and may be one greater
than the number of rows in the array.

INS ROW
(vector) n - [(matrix))

[[matrix1]] n - [(matrix2])

Examples:

- [[0 0 0 0]
[3 9 8 2] 1

[3 9 8 2]] -
[[11 22 33] [[11 22 33]

44 55 66] 4 - [44 55 66]

77 88 99]] [77 88 99]

[0 [1 0]]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,
GETCOL, GETROW, INSCOL, PUTCOL, PUTROW

58 Command Reference

' . 776 /8
INTERSECT
Returns the set intersection between two lists.

INTERSECT

Examples:

{1234)(56}-+ {}

{1234)(345}-+ (34}

Related Commands: ADJOIN, DIFF, SDIFF, -+SET, UNION

Command Reference 59

17 b I'(

KEEP
Keeps the bottom n objects on the stack while deleting all
objects above n.

I KEEP
... obj" ... obj1 n -+ obj" ... obh

Example:

"AA" 32 7. 1 11 8 11 2 -+ 7. 1 11 8 11

Related Commands: NDUP, SALL, SRLLD, SXCH

60 Command Reference

77(, zo
LCASE
Converts each character in a string to lowercase.

ILCASE

The case conversion supports the ISO 8859-1 character set
in the following ranges:

Example:

Lowercase

61h-7Ah
EOh-F6h
F8h-FEh

Uppercase

+- 41h-5Ah
+- COh-D6h
+- D8h-DEh

11 SAMPLE SEtHEt~CE 11 -+ 11 s.:iv1p1 e sentence 11

Related Commands: ICAPS, UCASE

Command Reference 61

LSORT
77t, 2 /

The command LSORT may be used to sort a series of n lists
based on the mth element of each list. The input and result
are formed as meta - objects.

The mth object in each list must be of the same type and
comparable with >. The lists are returned in ascending order
(the largest at the bottom of the stack). Use MREVERSE after
LSORT to produce a descending order result. The sort order
for strings follows the ISO 8859-1 character set (see
Character Codes).

LS ORT

Example:

{39}{17}{82)31-+
{ 1 7 } { 3 9 } { 8 2 } 3

Related Commands: EXTRACT, MREVERSE, QSORT

62 Command Reference

7J 6 2 -Z..

LTRIM
Removes leading space and tab (#09h) characters from a
string.

I LTRIM

Example:

II SAMPLE STR I t~G II -+ "SAMPLE STRING II

Related Commands: RTRIM, TRIM, -+WORDS

Command Reference 63

MAH
Adds an object to the head of a meta - object.

MAH
meta1 obj -+ meta2

< ... > obj -+ < obj ... >

Example:

21 32 47 3 99 -+ 99 21 32 47 4

Related Commands: MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP,
MZ2

64 Command Reference

\ '

MAH2
Adds an object to the head of a meta - object in position 2.

MAH2
meta2 meta1 obj -+ meta2 ' meta1

< meta2 > < meta1 > obj -+ <obj meta2 > < meta1 >

Example:

21 32 2 2. 3 4. 7 2 99 -+ 99 21 32 3 2. 3 4. 7 2

Related Commands: MAH, MAM2, MAT, MAT2, MOH, MDH2,
MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP, MZ2

Command Reference 65

MAM2
Concatenates two meta - objects.

MAM2

< meta2 > < meta1 > -+ < meta2 +1 >

Example:

21 32 47 3 7. 3 4.8 2 -+ 21 32 47 7.3 4.8 5

Related Commands: MAH, MAH2, MAT, MAT2, MDH, MDH2,
MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP, MZ2

66 Command Reference

77{, 2(,

MAT
Adds an object to the tail of a meta - object.

meta1 obj -+ meta2

< ... > obj -+ < ... obj >

Example:

21 32 47 3 99 -+ 21 32 47 99 4

Related Commands: MAH, MAH2, MAM2, MAT2, MOH,
MDH2, MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP,
MZ2

Command Reference 67

776 Z.7
MAT2
Adds an object to the tail of a meta - object in position 2.

MAT2
meta2 meta1 obj -+ meta2 ' meta1

< meta2 > < meta1 > obj -+ < meta2 obj > < meta1 >

Example:

21 32 2 2. 3 4. 7 2 99 -+ 21 32 99 3 2. 3 4. 7 2

Related Commands: MAH, MAH2, MAM2, MAT, MOH, MDH2,
MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP, MZ2

68 Command Reference

MOH
Extracts an object from the head of a meta - object.

MOH
meta, -+ meta2 obj

< obj .. . > -+ < ... > obj

Example:

99 21 32 4 7 4 -+ 21 32 4 7 3 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2,
MDH2, MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP,
MZ2

Command Reference 69

77(, 2.'f

MDH2
Extracts an object from the head of a meta - object in
position 2.

MDH2
meta2 meta1 -+ meta2 ' meta1 obj

< obj meta2 > < meta, > -+ < meta2' > < meta1 > obj

Example:

99 21 32 3 2. 3 4. 7 2 -+ 21 32 2 2. 3 4. 7 2 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDT, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP, MZ2

70 Command Reference

7 76 .$ 0

MDT
Extracts an object from the tail of a meta - object.

MDT
meta1 -+ meta2 obj

< ... obj > -+ < ... > obj

Example:

21 32 47 99 4 -+ 21 32 47 3 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT2, ML-+M, MM-+L, MREVERSE, MSWAP, MZ2

Command Reference 71

-r7 6 3/
MDT2
Extracts an object from the tail of a meta - object in position 2.

MDT2
meta2 meta1 -+ meta2 ' meta1 obj

< meta2 obj > < meta1 > -+ < meta2 ' > < meta1 > obj

Example:

21 32 99 3 2.3 4.7 2 -+ 2 1 32 2 2.3 4.7 2 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT, ML-+M, MM-+L, MREVERSE, MSWAP, MZ2

72 Command Reference

' ' 7 76 3 z.
ML--+M
Converts two lists into meta- objects.

ML-+M

Example:

{ 11 22} { 3.1 4.2 5.1 } -+
11 22 2 3.1 4.2 5.1 3

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT, MDT2, MM-+L, MREVERSE, MSWAP, MZ2

Command Reference 73

7 7{, ~ 3

MM--?L
Converts two meta - objects into lists.

MM-+L
meta2 meta, -+ {list2} {list,}

< meta2 > < meta, > -+ {list2 } {list1}

Example:

11 22 2 3.1 4.2 5.1 3 -+
{ 11 22 } { 3. 1 4. 2 5. 1 }

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT, MDT2, ML-+M, MREVERSE, MSWAP, MZ2

74 Command Reference

MREVERSE
Reverses the order of n objects on the stack. This command
will reverse the order of 5000 stack items about two seconds.

MREVERSE
obj, ... obj" n -

meta1 -

< obj1 obj2 obh > -

Example:

obj" ... obj, n

meta2

< obh obb obj1 >

11 22 • 2 3. 1 2 5 - 2 3. 1 . 2 22 11 5

Related Commands: KEEP, MAH, MAH2, MAM2, MAT, MAT2,
MOH, MDH2, MDT, MDT2, ML-M, MM-L, MSWAP, MZ2,
NDUP,SRLL,SRLLD,SXCH

Command Reference 75

77 6 3 ~
MSWAP
Swaps two meta - objects on the stack.

MSWAP
meta2 meta1 -+ meta1 meta2

< meta2 > < meta1 > -+ < meta1 > < meta2 >

Example:

11 22 2 3.1 4.2 5.1 3 -+ 3.1 4.2 5.1 3 11 22 2

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT, MDT2, ML-+M, MM-+L, MREVERSE, MZ2

76 Command Reference

MZ2
Places an empty meta - object in meta - stack position 2.

MZ2
meta1 --+ metaempty meta1

< meta1 > --+ < > < meta1 >

Example:

3. 1 4. 2 5. 1 3 --+ 0 3. 1 4. 2 5. 1 3

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MOH,
MDH2, MDT, MDT2, ML--+M, MM--+L, MREVERSE, MSWAP

Command Reference 77

NDUP
77 (, 3 7

Creates n copies of an object on the stack. If n is zero, no
objects will be returned.

I NDUP
obj n --+ obj ... obj

Examples:

23 0 --+

5.1 3 --+ 5.1 5.1 5.1

Related Commands: KEEP, MREVERSE, SALL, SRLLD SXCH

78 Command Reference

\ '\. 716 3 8"'

NXTOB
Given a list of n objects and an object, NXTOB finds the
location of the object in the list and returns the following
object. If the object is found at the end of the list, the first
object is returned. If the object is not found in the list, the
same object is returned.

I NXTOB
{obj, ... objn} objm -+ obim+1

Examples:

{) "FRED" -+ "FRED"

(11 22 33) -+

{ 11 22 33) 33 -+ 11

Related Commands: CDR, CUT, EXTRACT, LSORT, PRVOB,
SPLIT, REPLACE, REVERSE, ROTATE, -+SET

Command Reference 79

7 7 6 3 1
PRVOB
Given a list of n objects and an object, PRVOB finds the
location of the object in the list and returns the previous
object. If the object is found at the beginning of the list, the
last object is returned. If the object is not found in the list, the
same object is returned.

IPRVOB
{obj, .. . objn} objm -+ obim-1

Examples:

{) "FRED" -+ "FRED"

{ 11 22 33) 22 -+ 11

{ 11 22 33 } 11 -+ 33

Related Commands: CDR, CUT, EXTRACT, LSORT, NXTOB,
SPLIT, REPLACE, REVERSE, ROTATE, -+SET

80 Command Referenc'e

.
" ?lb yo

PUTCHA
Places a character at a specified position in a string. The
character may be specified by a real number character code
or by the first character In a string. In the second instance,
PUTCHA is similar to AEPL, except that only one character is
changed.

PUTCHR
"string1 • position code -+

"string1 • position "string2" -+
"string2"

"string3"

The commands PUTCHA and SUBNUM are designed for
applications requiring an index array for values less than 255.
Using a string to store the indices as character codes saves
considerable memory compared to other storage methods,
such as lists or arrays.

Examples:

"JOHM" 3 65 -+ "._IOAM 11

II ,_IQHM II 3 II ABC II -+ II ,_IQAt·l 11

Related Commands: STACON, SUBNUM

'
Command Reference 81

PUT COL
Replaces a column of data In an array.

PUTCOL
[[matrix1]] col ([new-col]) -+ ([matrix2]]

Examples:

[1 2 3] 2 [[44]] -+ [1 44 3]

[[1 2 3] [4 5 6]] 2 [[11][22]] -+

[[1 11 3] [4 22 6]]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,
GETCOL, GETROW, INSCOL, INSROW, PUTROW

82 Command Reference

776 </ 2.

PUT ROW
Replaces a row of data in an array.

PUTROW
[vector 1) row [new-row] -+ [vector2]

[[matrix1]] row [new-row) -+ [[matrix2]]

Examples:

[123] 1 [456]-+ [456]

[[1 2 3] [4 5 6]] 2 [7 8 9] -+
[[1 2 3] [7 8 9]]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,
GETCOL, GETROW, INSCOL, INSROW, PUTCOL

Command Reference 83

7 7l '-/3
PX+
Adds two graphics pixel coordinates.

I
PX+

. {#1 #2} {#3 #.} -+ {#1+3 #2+.}

Example:

{ #3d #?d } { #6d # 1 d } -+ { #9d #8d }

Related Command: PX-

84 Command Reference

PX-
,.
'•,

Subtracts two graphics pixel coordinates.

Example:

{ #23d #54d) { #6d #ld) -+ { #17d #53d)

Related Command: PX+

Command Reference 85

PX OFF
77 6 '(S-

Clears a pixel in an arbitrary graphics object.

I PXOFF
grob { #x #y } --+ grob'

Notes:

• This command does not work for PICT. Use the
command PIXOFF for clearing pixels in PICT.

• The upper-left pixel in a graphics object has the
coordinate { #0 #0 } (see Graphics).

• This command does not return a unique copy of the
graphics object. You may wish to execute NEWOB first
to ensure that the result is a unique object (See
Temporary Memory).

Example:

GROB 8 2 0304 { #6d #ld } --+ GF.:OB 8 2 0300

Related Commands: PXON, PX?

86 Command Reference

7)6 Y6
PXON
Sets a pixel in an arbitrary graphics object.

IPXON
grob { #x #y } -+ grob'

Notes:

• This command does not work for PICT. Use the
command PtXOFF for clearing pixels in PICT.

~ xo .,.,/ se7j-;'3
• The upper-left pixel in a graphics object has the

coordinate { #0 #0 } (see Graphics).

• This command does not return a unique copy of the
graphics object. You may wish to execute NEWOB first
to ensure that the result is a unique object (See
Temporary Memory).

Example:

GFWB 8 · 2 0300 { #6d #1d } -+ GROB 8 2 0304

Related Commands: PXOFF, PX?

Command Reference 87

PX?
716 V7

Tests a pixel in an arbitrary graphics object.

I PX?
grob { #x #v} - T/F

Notes:

• This command does not work for PICT. Use the
command PIX? for testing pixels in PICT .

• The upper-left pixel in a graphics object has the
coordinate { #0 #0 } (see Graphics).

Example:

GROB 8 2 0300 { #6d # 1 d } - 0
GROB 8 2 0304 { #6d # 1 d } - 1

Related Commands: PXOFF, PXON

88 Command Reference

PX-+R
Converts a list of two binary Integers to two real numbers.

I PX-+R
{ #col #row } --+ col row

Example:

{ #4d # 18d } --+ 4 18

Related Command: R-+PX

Command Reference 89

QSORT
The command QSORT may be used to sort a series of n
objects on the stack. The input and result are formed as
meta - objects.

Each object must be of the same type and comparable with >.
The objects are returned in ascending order (the largest at the
bottom of the stack). Use MREVERSE after QSORT to
produce a descending order result. The sort order for strings
follows the ISO 8859-1 character set (see Character Codes).

I QSORT
obj 1 ••• obj" n -+ obh .. . obh n

Examples:

32874 -+ 23784

"FRED" "ANt~E" "ZOE" 3 -+ "At-lME" "FRED" "ZOE" 3

Related Commands: LSORT, MREVERSE

90 Command Reference

REPLACE
The command REPLACE may be used to replace all
occurrences of a substring within a string or of objects within
a list. String comparisons require an exact match.

REPLACE
'string 1' 'stringsearch' "string,epi' --+ "string2'

{list1} obi search obirepl --+ {list2}

Examples:

",.JOHt·l" "H" " A" --+ " • .JOAM"

11 ABCBD 11 11 B11 11
-

11
--+ 11 A-C-D 11

{ 1 '3 ::: '3 5 } '3 44 --+ { 1 44 3 44 5 }

{ (1, 1) 2. 2 "f t-ed " 44 } "ft-ed" #3:::d --+

{ (1,1) 2.2 #33d 44)

Related Commands: CAR, CDR, CUT, EXTRACT, SPLIT,
REVERSE, ROTATE, -+SET

Command Reference 91

REVERSE
The command REVERSE may be used to reverse the order of
characters in a string or objects in a list.

Reversals of large lists will be significantly faster if the list was
originally stored In a global variable. The time to reverse a
large list Is longer than the time required for the MREVERSE
command, owing to the overhead of unpacking and re­
packing the list objects. Reversing a 1000 - element list
originating from a global variable should take about three
seconds. If the same list originates in temporary memory, the
reversal could take several minutes.

String reversals are accomplished at a rate near 12,000
characters per second.

REVERSE

Examples:

-+
"string 1 • -+

{ } -+
{ obj 1 ... obj" } -+

"string2"

{ }
{obj" ... obh}

"ABCD" -+ "DCBA"

{12345}-+ {54321}

Related Commands: CAR, CDR, CUT, EXTRACT, LSORT,
SPLIT, REPLACE, ROTATE, -+SET I M ~E VC r:zs<:::

92 Command Reference

ROTATE
The command ROTATE may be used to rotate the contents of
a list, string, or graphics object. The direction of rotation is
controlled by the sign of x:

x<O Rotates left covA/Tt01?.cLoc1<:..,v1.sF ~
x=O No change
x>O Rotates right c..LCJcKw1>F ;J

Graphics objects are rotated 90° to the left for x<O, or 90° to
the right for x>O. If lxl is greater than the length of the list or
string, the rotation count will be calculated MOD the list or
string size.

ROTATE
"string," x - "string2"

list1 x - list2
grob1 x - grob2

String Examples:

1111 5 - 1111

"ABCDE" 2 - "DEABC"

"ABCDE" -2 - "CDEAB"

List Examples:

{) 5 - { }

{ 1 2 3 4 5) 2 - { 4 C'
.J 1 2 3)

{ 1 2 3 4 5) -2 - ; ·;:) 4 5 1 2) ~ ...,

Command Reference 93

Graphics Examples:

Graphic 21 x 8 -1 -+ Gt-aphic 8 x 21
Graphic 21 x 8 0 -+ Gt-aphic 21 x 8
Graphic 21 x 8 1 -+ Graphic 8 x 21

« "123" 2 ~GROB -1 ROTATE PICT STO C } PVIEW >

('I)
N

« "123" 2 ~GROB 1 ROTATE PICT STD C } PVIEW >

....
l'I)
(I)

Note: Rotation performance for graphics objects is reasonable
for small objects, such as axis labels for graphs, however the
algorithm for rotating graphics was optimized for space as
opposed to speed. Consequently, rotating a 131x64 graphics
object takes just under 15 seconds. The rotation requires
enough free memory to construct a second temporary
graphics object.

Related Commands: CAR, CDR, CUT, EXTRACT, LSORT,
NXTOB, PRVOB, SPLIT, REPLACE, REVERSE, -+SET

94 Command Reference

"776 Y3

RPTSTR
Creates a string consisting of n repetitions of an input string.
If only one character is to be repeated, the STRCON
command will give faster performance.

I RPTSTR
"string• n -+ "string ... string•

Examples:

"ABC" 0 -+ 1111

"ABC" 3 -+ "ABCABCABC"

Related Command: STRCON

Command Reference 95

RTRIM
{ 7 6 !>'-/

Removes trailing space and tab (#09h) characters from a
string.

I RTRIM
•string1 • - "string2"

Example:

II SAMPLE STRING II - II SAMPLE STRING"

Related Commands: LTRIM, TRIM, -WORDS

96 Command Reference

R~PX
Converts two real numbers to a list of two binary integers.

I R-+PX
col row -+ { #col #row }

Example:

45 37 -+ { #45d #37d }

Related Command: PX-+R

Command Reference 97

SDIFF
Returns the set symmetric difference of two lists.

I SDIFF

Examples:

{1234}{56}-+ {123456}

{1234}{345}-+ {125}

Related Commands: ADJOIN, DIFF, INTERSECT, -+SET,
UNION

" WHAl Is l,,v O,,.;" 5fr Dt- T11f Orttf°K

Bv1 /Vol BorH? " (xo/!-)

98 Command Reference

776 > 1
-+SET
Removes duplicate objects from a list.

1-+SET

Examples:

{1234}-+ {1234}

{412321}-+ { 4123}

Related Commands: ADJOIN, INTERSECT, CAR, CDR, CUT,
DIFF, EXTRACT, NXTOB, PRVOB, SDIFF, SPLIT, REPLACE,
REVERSE, ROTATE, UNION

Command Reference 99

776 >~

SPLIT
The command SPLIT may be used to divide a list or string into
first m and remaining components.

SPLIT
m -+

"string1 • m -+ "string2" "string3"

{ } m -+ { } { }
{obj1 ••• objn} m -+ {objm+ 1 ••• objn} {obj 1 .. . objm}

Examples:

"ABCDE" 0 -+ "ABCDE" U II

"ABCDE" 3 -+ "DE" "ABC"

{) 3 -+ { } {)

{ 3 9 8 2 7) 0 -+ { ,..,
9 .-. ~. 7 } { } .::;, ·=- .::.

{ 3 9 8 2 7 } 2 -+ { 8 2 7 } { 3 9 } I

Related Commands: CAR, CDR, CUT, REVERSE, ROTATE

100 Command Reference

SRLL
Rotates n objects on the~m times.

7 76 5"'f

SRLL
obj 1 ••• objn n m -+ objn·m+l ... obj" obj1 •• . obim+1

Example:

11 22 33 44 55 5 2 -+ 44 :55 11 22 33

_;s yy ~5 II 2Z

Related Commands: KEEP, MREVERSE, NDUP, SRLLD,
SXCH

Command Reference 101

SR LLD
Rotates n objects on the stack down m times.

SRLL
obj 1 •• • objn n m -+ obim+l ... obj" obj 1 •• . objm

Example:

11 22 33 44 55 5 2 -+ ~ 44 s5 11 aa

Related Commands: KEEP, MREVERSE, NDUP, SALL, SXCH

102 Command Reference

77 6 61
-+STDSTR
Converts an object to a string (like -STA}, using STD display
mode and a wordsize of 64 bits.

1-STDSTR
obj - "string•

Examples:
Assuming the current display mode is 2 FIX, execute '""'
-NUM, then -STDSTR:

3. 14 - "3. 14159265359"

Assuming the current wordsize is 8 and HEX mode is set,
enter # 123h. The wordsize of 8 causes the binary integer to
be displayed as # 23h. To see the full value, execute
-STDSTR:

2 3 h - "# 12::::h"

Command Reference 103

STRCON
776 6 2-

Creates a string consisting of n repetitions of a character
code. Strings are created at a rate nearing 20,000 characters
per second.

I STRCON
code n -+ "string"

Examples:

65 0 -+ 1111

65 10 -+ "AAAAAAAAAA"

Related Commands: PUTCHA, RPTSTR, SUBNUM

104 Command Reference

)

STRCTR
Centers a string In a specified number of spaces. If the
number of spaces added Is not even, the extra space will be
added to the end of the string.

I STRCTR
"string1 • n -+ "string2"

Example:

"SAMPLE" 9 -+ " SAMPLE "

"SAMPLE" 10 -+ " SAMPLE "

Related Command: TRIM

Command Reference 105

SUBNUM
Returns the character code of the nth character of a string.

ISUBNUM
"string• n -+ code

The commands PUTCHA and SUBNUM are designed for
applications requiring an index array for values less than 255.
Using a string to store the indices as character codes saves
considerable memory compared to other storage methods,
such as lists or arrays.

Example:

II ALPHABET II 4 -+ 72

Related Commands: PUTCHA, STRCON

106 Command Reference

SXCH
7 76 ?.S-

Exchanges objects at levels m and n on the stack.

I sx~-~ objm ... Obin .. . m n --+ ... objn ... objm •.•

Example:

58 22 87 34 14 4 2 --+ 58 34 87 22 14

Related Commands: KEEP, MREVERSE, NDUP, QSORT,
SRLL, SRLLD

Command Reference 107

-+TIO
Converts a string to its translated form for output, respecting
the current TRANSIO setting In IOPAR. If there is no IOPAR in
the HOME directory, a new one will be created in the HOME
directory with the default TRANSIO setting of 1 (see Character
Translations) .

1-TIO
' string1 • - ' string2'

Example:

"« ~ x « x S IN x / » » " -
""-<< '\.-) r "-<< x SIM)< / ·-...> > "- >> "

Related Command: TIO-

108 Command Reference

Tl~
7 76 (, 7

Converts a string from its translated form for output,
respecting the current TRANSIO setting in IOPAR. If there Is
no IOPAR in the HOME directory, a new one will be created in
the HOME directory with the default TRANSIO setting of 1 (see
Character Translations).

ITIO-
"string1 • -+ "string2"

Example:

"'-<< -....-> r '-<< x SIN x / '->> '->>" -+
"« ~ x « x SIN x / » » "

Related Command: -+TIO

Command Reference 109

TRIM
Removes leading and trailing space and tab (#09h) characters
from a string.

ITRIM
"string 1 • -+ "string2 •

Example:

II SAMPLE STRING II -+ "SAMPLE STRING"

Related Commands: LTRIM, RTRIM, STRCTR, -+WORDS

110 Command Reference

776 (, </'
UCASE
Converts each character in a string to uppercase.

[UCASE
"string 1" -+ "string2 •

The case conversion supports the ISO 8859-1 character set
in the following ranges:

Lowercase Uppercase

'i?-/"2..L. 61 h-7Ah -+ 41h-5Ah 6'7 - q()

2 '111- 2 Y6 E0h-F6h -+ C0h-06h t'(z_- 2- 1'(

~ 11 g - 25'1 F8h-FEh -+ D8h-0Eh 2./(,-Z '<-'-

Example:

"sa1"1ple sentence" -+ "SAMPLE SEMTEl'~CE"

Related Commands: ICAPS, LCASE

Command Reference 111

7 7G 10

UNION
Returns the set union of two lists.

I UNION

Examples:

{1234}{56}-+ {123456}

{1234}{345}-+ {12345}

Related Commands: ADJOIN, DIFF, INTERSECT, SDIFF,
-+SET

112 Command Reference

7'?6 71
VFIND
Given an global variable name or an object type, VFIND
performs a recursive search for a global variables start ing at
HOME and returns a series of paths (each of which is a list) to
each occurrence of a variable in user memory meeting the
search criteria (see Object Types).

VFIND
name -+ {path 1} •.. {pathm} n

type -+ {path 1} ... {pathm} n

Examples:

4 -+ 0

[1 -+ { HOME ;:.::) { HOME F.:EALS '"(} 2

I }:: I -+ (HOME ::-::) { HOME F.:EALS ~-~
.,
·' 2

Command Reference 113

-+WORDS
176 72...

Separates a string into words and their count. The separation
characters are any character code :530, 32, and 160. Adjacent
separator characters are treated as a single separator
character.

'-+WORDS
"word 1 ••• word"• -+

Examples:

1111 -+ 0

"A TEST STRIMG" -+ "A" "TEST" "STRIMG" 3

Related Commands: LTRIM, RTRIM, TRIM

114 Command Reference

77 6 73
XTIME
Times the execution time for an object such as a command or
program. An initial garbage collection Is performed (see
Temporary Memory) to produce the most reliable result, and
the result is rounded to the nearest thousandth of a second.

IXTIME
object -+ seconds

Example:

« 1 100 START NEXT » -+ TiMe: .387_s

XLIB ?oJ AV o 776 7 1.(
,I

Command Reference 115

02!/ 33

oz..q 77

02- I/ 2.(__

02.A ?'f

O""LE"'fl/

02£6 D

O"LJ)'f P

02..AB g

Ol-1'14 E

0 Z. {!>If

o 2-11 F e.

oz.ADA

02e:i2

o2Aqf)

02-8'10

O"l.!>62..

0288$

<)Type

I 0
2 1
3 2

l/< 3
4

.r 5
b 6
7 7
~ 8

Cf 9
B 10
c 11
]) 12
E 13
oF 14
2f 15
~F 16
qr:: 17

18
19

/ff 26

oz.qi/ 1f 20
oz.q >s- ?,f 2. I
o2qqo ~f 2.1-
e>z.Aoll 5f 23
o?..q Bf bf 2 '{

o z.vcc 7 f 2 >
27

116

Object Types

Object

Real number
Complex number
String
Real array
Complex array
List
Global name
Local name
Program
Algebraic
Binary integer
Graphics object
Tagged object
Unit object
XLIB name
Directory
Library
Backup object
Built- in function
Built- in command
Library Data

> y;;fe~ f,;,,,a7
l o "'j !< ea. I
Lo.,, Co...,17/ex
l i.., keel Arra_/
Cf..a ""a.c.-fer
Cvde.

r:: ~+ev--VtC(_ I

Example

1.2345
(2 . 3,4.5)

"ABC"
[1 2 3]

[(1, 2) (3,4)]

{ "ABC" Var }

x
y
-:::: A ·?

"- + »
I ?:::'y' ' '2'

247d
Gr-aphic 13 1 x 64
Di s t: 34.45
32_ft / £A2

?(LIB 766 1
DIR ... EMD
L i bran,1 766 : ...
Back up HOMED IF:
srn
S ~·l AP

Libr-ar-y Data

Object Types

Character Codes

NUM CHR NUM CHR NUM CHR NUM CHR
0 • 32 64 e 96 I

1 • 33 ! 65 A 97 a
2 • 34 II 66 B 98 b
3 • 35 # 67 c 99 c
4 • 36 $ 68 D 100 d
5 • 37 /.: 69 E 101 e
6 • 38 & 70 F 102 f
7 • 39 I 71 G 103 9
8 • 40 (72 H 104 h
9 • 41) 73 I 105 i

10 • 42 * 74 J 106 j
11 • 43 + 75 K 107 k
12 • 44 ' 76 L 108 I
13 • 45 - 77 M 109 r'l
14 • 46 . 78 M 110 n
15 • 47 / 79 (I 111 0

16 • 48 0 80 p 112 p

17 • 49 1 81 Q 113 q
18 • 50 2 82 R 114 r
19 • 51 3 83 s 115 s
20 • 52 4 84 T 116 t
21 • 53 5 85 u 117 u
22 • 54 6 86 v 118 v
23 • 55 7 BT ~J 119 w
24 • 56 8 88 x 120 x
25 • 57 9 89 y 121 y
26 • 58 : 90 z 122 z
27 • 59 ; 91 [123 {

28 • 60 < 92 ' 124 I
29 • 61 = 93] 125 }

30 • 62 > 94 A 126 ,.,
31 ... 63 ? 95 - 127 ~

Character Codes 117

NUM CHR NUM CHR NUM CHR NUM CHR
128 6. 160 192 A 224 ~

129 ;;;: 161 i 193 A 225 .a
130 .., 162 ¢: 194 A 226 ti
131 .f 163 £ 195 ~ 227 ~

132 J' 164 !::! 196 A 228 a
133 }; 165 !i! 197 A 229 ~

134 • 166 I 198 fE 230 <e
135 tr 167 9 199 t; 231 ~

136 ~ 168 .. 200 E 232 e
137 ~ 169 ~ 201 E: 233 e
138 ~ 170 .!. 202 ~ 234 ~

139 ':t:. 171 « 203 E: 235 e
140 oc 172 ~ 204 t 236 i.
141 ~ 173 - 205 1 237 1
142 + 174 ~ 206 i 238 i
143

"'"
175 - 207 I 239 1

144 -t- 176 a 208 £i 240 0
145 "i 177 t 209 t-4 241 r.
146 b 178 i! 210 0 242 0
147 E 179 :I 211 6 243 6
148 'I) 180 , 212 0 244 8
149 8 181 JJ 213 i3 245 0
150 (', 182 11 214 0 246 0

151 p 183 . 215 x 247
152 (}" 184 > 216 p 248 p
153 1' 185 l 217 u 249 u
154 (,) 186 2 218 u 250 u
155 8 187 » 219 u 251 A

'-'

156 TT 188 "' 220 u 252 u

157 Q 189 11 221 y 253 .;,
158 • 190 ~ 222 ~ 254 D
159 0) 191 l 223 ~ 255 y

118 Character Codes

Character Translations

When data is transferred between the HP 48 and a computer
using translate codes 2 (OOQ-+159) or 3 (OOQ-+255), conversions
are used to represent some characters. The command TRANSIO
may be used to assert the current translation code.

For data being transferred to a computer with translate codes 2 or
3, each '·, is replaced with -... -... . For data being transferred to the
HP 48, characters may be converted using a text conversion or
··· . .)()()(,where xxx is the three-digit (decimal) character code.

NUM HP48 ASCII NUM HP48 ASCII

128 ~ \ <) 147 E \Ge
129 :-.....: \x- 148 ''I \Gn
130 'rJ \.V 149 8 \Gh
131 .[\v/ 150 ;:·i \GI
132 .f \.S 151 f' \Gr
133 I \GS 152 (1" \Gs
134 • \I> 153 ·r \Gt
135 TT \pi 154 (I) \Gw
136 .:.i \.d 155 6 \GD
137 :; \<= 156 TT \Pl
138 ~ \> = 157 ~-~ \GW
139 ':/:. \=/ 158 • \[]
140 C(\Ga 159 ((• \oo
141 -+ \-> 171 « \<<
142 -t- \<- 176 a \"'o
143 ~· \Iv 181 µ \Gm
144 -t· \I" 187 :~· \>>
145 hi \Gg 215 x \.x
146 6 \Gd 216 !Zi \0/

247 \:-

Character Translations 119

Flags

User flags are numbered 1 through 64. System flags are
numbered from -1 through -64. By convention, application
developers are encouraged to restrict their use of user flags to
the range 31 -64.

All flags are clear by default, execpt for the word size (flags - 5 -+

-10).

Flag Description Clear Set Default

Symbolic Math Flags

-1 Principal Solution General solutions Principal solutions Oear

-2 Symbolic Constants Symbolic form Numeric form Oear

-3 Numeric Results Symbolic results Numeric results Oear

-4 Not used.

Binary Integer Math Flags

-5-+ Binary integer wordsize n + 1 : 0 $ n $ 63
64

-10 Flag -1 O is the most significant bit

Binary Integer Base -11 -12 DEC

-11 , DEC Oear Oear

and BIN Oear Set

-12 OCT Set Oear

HEX Set Set

-13 and -14 are not used.

120 Flags

Fl~ Description Clear Set Default

Coordinate System Flags -15 -16 Rect.

-15 Rectangular Oear aear

and Cylindrical Polar Oear Set

-16 Spherical Polar Set Set

Trigonometric Mode Flags -17 -18 Degrees

-17 Degrees aear a ear

and Radians Set aear

-18 Grads aear Set

Math Exception Flags

-19 Vector /complex Vector Complex Vector

-20 Underflow Exception Return 0, Error Oear
set -23 or -24

-21 Overflow Exception Return ± MAXR, Error Oear
set -25

-22 Infinite Result Error Return ± MAXR, Error
set -26

-23 Pos. Underflow Ind. No Exception Exception aear

-24 Neg. Underflow Ind. No Exception Exception aear

-25 Overflow Indicator No Exception Exception aear

-26 Infinite Result Ind. No Exception Exception a ear

-27 through -29 are not used.

Plotting and Graphics Flags

-30 Function Plotting f(x) yand f(x) f(x)

-31 Curve Filling Filling Enabled Filling Disabled Enabled

-32 Graphics Cursor Visible Light Bkgnd Visible Dark Bkgnd Light

Flags 121

Flag Description Clear Set Default

1/0 and Printing Flags

-33 1/0 Device Serial IR Serial

-34 Printing Device IR Serial IR

-35 f/O Data Format ASCII Binary ASCII

-36 RECV Overwrite New variable Overwrite New

-37 Double - Spaced Print Single Double Single

-38 Linefeed Inserts LF Suppresses LF Inserts

-39 Kermit Messages Msg Displayed Msg Suppressed Displayed

Time Management Flags

-40 Oock Display TIME menu only All times TIME menu

-41 Oock Format 12 hour 24 hour 12 hour

-42 Date Format MM/DD/YY DD.MM.VY MM/DD/YY

-43 Rpt. Alarm Reschedule Rescheduled Not Rescheduled Rescheduled

-44 Acknowledged Alarms Deleted Saved Deleted

Notes: If flag -43 is set, unacknowledged repeat alarms are not rescheduled.
If flag -44 is set, acknowledged alarms are saved in the alarm catalog.

Display Format Flags

-45-+ Set the number of digits in Fix, Scientific, and
0

-48 Engineering Modes

Number

Display Format
-49 -50 STD

-49 STD aear aear

and FIX aear Set

-50 SCI Set aear

ENG Set Set

-51 Fraction Mark Decimal Comma Decimal

-52 Single Line Display Multi-line Single-line Multi-line

-53 Precedence () suppressed () displayed Suppressed

122 Flags

Flag Description Clear Set Default

Miscellaneous Flags

-54 Not used.

-55 Last Arguments Saved Not Saved Saved

-56 Beep On Off On
-57 Alarm Beep On Off On
-58 Verbose Messages On Off On
-59 Fast Catalog Display Off On Off
-60 Alpha Key Action Twice to lock Once to lock Twice

-61 USR Key Action Twice to lock Once to lock Twice

-62 User Mode Not active Active Not active

-63 Vectored Enter Off On Off

-64 Set by GETI or PUTI when their element indices wrap around

The HP 82211A HP Solve Equation Library application card uses
three user flags:

Flag Description Clear Set Default

60 Units Type SI units English units SI units

61 Units Usage Units used Units not used Units used

62 Payment Mode End mode Begin mode End mode

Flags 123

Alpha Keyboard

a a b p c a d 6 e ~ f I

0 0 m [Q:J 0 0
g "th 17i ooj lk ti~

~ [8J DJ [JJ IT] [TI
m ' n µ o O p - q ! r p

~[K][QJITJ[[JITJ
s C7 t .,. u % v - w w x x

ITJ [TI @:] 0 [ill 0
& @ y :!: z II ! I ? l

I ENTER I OJ cu !DELI I +- I
LC INS : etc. () #

~Ci][IJ[DQ
$ t £ ¥ 1::1 0 [) -

~ITJCOC00
== 'F < > :5 ~ «» ••

~ITJITJCOD
CONTOFF = -+, +' 11' A,.{} : :

loNI [I] 8 lsPcl ~

124 . Alpha Keyboard

The HP48

Programmer's ToolKit

Getting Started 1
Character Set Ca~ og 5
Menu Label Builder 7
Flag Catalog 10
Data Browser 13
Title Browser 22
T-. .,; Library . 26
Command Reference 40
Object Types 116
Character Codes 117
Character Translations 119
Flags 120
Alpha Keyboard 124

